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THE LATTICE OF FULLY INVARIANT SUBGROUPS OF
A REDUCED COTORSION GROUP

T. KEMOKLIDZE

Abstract. The present work considers the lattice of fully invariant
subgroups of a reduced cotorsion group, when torsion part is a count-
able direct sum of torsion-complete groups. It is shown that the lattice
is isomorphic to the lattice of filters of a semi-lattice constructed of
infinite matrices and indicators.

îâäæñéâ. àŽêæýæèâĲŽ îâáñùæîâĲñèæ çëàîâýãæåæ þàñòæï ïŽãïâ-
Ĳæå æêãŽîæŽêðñè óãâþàñòåŽ éâïâîæ, îëùŽ àîâýãæåæ êŽûæèæ àîâý-
ãæåŽá ïîñèæ þàñòâĲæï åãèŽáæ ìæîáŽìæîæ þŽéæŽ. êŽøãâêâĲæŽ, îëé
âï éâïâîæ æäëéëîòñèæŽ ñïŽïîñèë éŽðîæùâĲæïŽ áŽ æêáæçŽðëîâ-
ĲæïŽàŽê ŽàâĲñèæ êŽýâãŽîéâïîæï òæèðîåŽ éâïîæïŽ.

In the present work we consider the problems of the theory of abelian
groups. Throughout the paper, under the word “group” we will mean the
additively written abelian group. The use will be made of the notation and
terminology from monographs [2] and [3].

By p we denote a fixed prime number. Z and Q are, respectively, addi-
tive groups of integer and rational numbers. Q∗p denotes the ring of p-adic
integers, Jp is its additive group. A mixed group involves both the nonzero
elements of finite order and the elements of infinite order. A subgroup A
of the group B is said to be fully invariant if B is mapped into itself for
any endomorphism of the group A. Such are, for example, the subgroups
nA = {na | a ∈ A}, A[n] = {a ∈ A | na = 0}, n > 0, n ∈ Z and the torsion
part of a group A.

A group D is said to be divisible (respectively p-divisible), if the equality
nx = a (respectively pnx = a) has a solution in D for any natural number n
and any a ∈ D. Such are, for example, the groups Q, Q/Z, the quasicyclic
group Z(p∞), i. e. the group generated by the elements c1, c2, . . . , cn, . . . ,
where pc1 = 0, pc2 = c1, . . . , pcn+1 = cn, . . . . Every divisible group is a
direct sum of isomorphic copies of Q and Z(p∞) (for various p), and since
every abelian group expands into a direct sum of a divisible and a reduced
group (i. e. a group containing no nonzero divisible subgroups), the problem
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of description of various abelian groups comes to the case of describing the
corresponding reduced groups.

A subgroup G of a group A is said to be pure (respectively, p-pure) if
every equation nx = g ∈ G (respectively, pnx = g) which has a solution in
the whole group A has a solution in G as well. For example, every direct
summand of a group is a pure subgroup.

A subgroup B of the group A is said to be a p-basic subgroup, if the
following three conditions are fulfilled: 1. the subgroup B is a direct sum
of cyclic p-groups and infinite cyclic groups; 2. B is a p-pure subgroup of
the group A; 3. the quotient group A/B is a p-divisible group.

A group A is said to be algebraically compact if it splits out as a direct
summand from every group G containing it as a pure subgroup. A group
A is complete in the Z-adic topology (i. e. in the topology in which the
subgroups nA, n ∈ Z, n 6= 0 form the base of zero neighborhoods) if and
only if it is a reduced algebraically compact group (see [2], §39).

Torsion-complete p-groups are defined as torsion parts t(B̂) = B of p-adic
completions B̂ of direct sums B of cyclic p-groups. (In the p-adic topology
the subgroups pnA, n ∈ Z, n 6= 0 form the base of zero neighborhoods).

If a ∈ A, then the largest nonnegative integer r for which the equality
prx = a has a solution x ∈ A is called the p-height hp(a) of the element a.
If the equality prx = a has a solution for any r, then a is called an element
of infinite p-height, hp(a) = ∞. The zero is of infinite height with respect
to any prime number. A p-group A is said to be separable if it contains no
elements of infinite height, i. e. the Ulm subgroup A1 =

∞∩
n=1

pnA = 0.
The investigation of the lattice of fully invariant subgroups of a group is

an important task of the theory of abelian groups. For sufficiently wide class
of p-groups, this problem has been studied by R. Baer [1], I. Kaplansky [6],
P. Linton [9], R. Pierce [15], D. Moore and E. Hewett [13], etc. The works
due to A. Mader [11], R. Göbel [4], A. Moskalenko [14], S. Grinshpon and
Krylov [5], Misyakov [12], and other authorsvare dedicated to the study of
this topic in torsion free and mixed groups.

The lattices of fully invariant subgroups in the class of cotorsion groups
are scarcely studied. A group A is said to be a cotorsion group if its exten-
sion by means of any torsion free group C splits: Ext(C, A) = 0. Importance
of the class of cotorsion groups in the theory of abelian groups can be ex-
plained by two facts: for any groups A, B the group Ext(A,B) is a cotorsion
group; every reduced group A is isomorphically embedded into the group
A

¦
= Ext(Q/Z,A), the so-called cotorsion hull of the group A, and in addi-

tion, A
¦
/A is a divisible torsion free group. Every reduced cotorsion group

A decomposes into a direct sum A = T
¦ ⊕ C, where T

¦ ∼= Ext(Q/Z, T ),
T = tA is the torsion part of the group A, and C ∼= Ext(Q/Z, A/Z) is
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an algebraically compact torsion free group. If T = ⊕
p
Tp is the decom-

position into the direct sum of primary components, then Ext(Q/Z, T ) ∼=
Π
p
Ext(Z(p∞), Tp) = Π

p
T

¦
p, Ext(Q/Z, A/T ) ∼= Π

p
Ext(Z(p∞), A/T ) = ΠCp

p

and
A = Π

p
(T

¦
p ⊕ Cp). (1)

Thus the study of cotorsion groups reduces in a considerable extent to that
of groups of the type

Ap = T
¦
p ⊕ Cp, (2)

where Tp is a p-group and Cp is an algebraically compact torsion free group.
As is shown in [2] (§§40, 54), T

¦
p, Cp and, hence, Ap are p-adic modules, i. e.

modules over the ring Q∗p.
The study of fully invariant subgroups in cotorsion groups is still more

important because endomorphisms in this class of groups are defined by
their effects on the torsion part and, as is shown in [10, Theorem 3.3], in
the mixed groups, the rings of endomorhisms E(A) ∼= E(tA) if and only if
A is a fully invariant subgroup of the cotorsion hull (tA)

¦
.

In investigations of lattices of fully invariant subgroups of a group, the
notions of the indicator and of a fully transitive group are of essential use.

The p-indicator of an element a of a group A is the increasing sequence
of ordinal numbers

HA(a) ≡ H(a) =
(
h(a), h(pa), . . . , h(pna), . . .

)
,

where h denotes the generalized p-height of the element a, i. e. h(a) = σ
if a ∈ pσA\pσ+1A and h(0) = ∞ (of course, if h(pna) = h(0) = ∞, then
h(pn+1a) = ∞). On the set of indicators we can introduce the ordering

H(a) ≤ H(b) ⇐⇒ h(pia) ≤ h(pib), i = 0, 1, 2, . . .

A reduced p-group is said to be fully transitive if for its arbitrary elements
a and b, for H(a) ≤ H(b), there exists an endomorphism ϕ of the group such
that ϕa = b. In fully transitive groups, using the aforementioned indicators,
we study the lattice of fully invariant subgroups. In particular, I. Kaplansky
has shown that every such subgroup of a group A has the form

A(u) =
{
a ∈ A |H(a) ≥ u

}
,

where u = (σ0, σ1, . . . , σn, . . . ) is an increasing sequence of ordinal numbers
and symbols ∞, satisfying the condition: if between σn and σn+1 there is
a jump (i. e. σn+1 > σn + 1), then A contains an element of order p and
height σn (see [3, Theorem 67.1]).

A. Mader [11] has shown that an algebraically compact group is fully
transitive, and using the aforementioned indicators, he described the lattice
of fully invariant subgroups of an algebraically compact group. In addition,
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in a generalized form he pointed out the conditions whose fulfilment enables
one to describe the lattice of fully invariant submodules.

Theorem 1 (A. Mader). Let A be a module over a commutative ring R,
∆ the lattice of all its fully invariant submodules, Ω some meet-semilattice
and Φ : A → Ω a mapping possessing the following properties:

1) Φ is surjective;
2) Φ(fa) ≥ Φ(a), ∀ a ∈ A and f ∈ EndA;
3) Φ(a + b) ≥ Φ(a) ∧ Φ(b);
4) if Φ(a) ≥ Φ(b), then there exists the endomorphism f of the module

A such that f(b) = a;
5) if C ∈ ∆, then for any a, b ∈ C there exists c ∈ C such that Φ(c) =

Φ(a) ∧ Φ(b).
Then the set Ω∗ of all filters of Ω, ordered with respect to the inclusion,

is a lattice, and the mapping α : Ω∗ → ∆ defined by the rule α(D) = {a ∈
A |Φ(a) ∈ D} is a lattice isomorphism.

Just as in p-groups, we define the notion of full transitivity in the group
T

¦
= Ext(Z(p∞), T ). If T is a torsion-complete group, then its cotorsion

hull is an algebraically compact group (see [2, §56]) and, as mentioned above,
is fully transitive.

A. I. Moskalenko [14] has proved that if T is a direct sum of cyclic p-
groups, then T

¦
is likewise fully transitive, and all the conditions of Theorem

1 are fulfilled. Hence in this case the lattice Ω∗ of indicator filters describes
the lattice of fully invariant subgroups. A natural generalization of torsion-
complete groups and of direct sums of cyclic p-groups are direct sums of
torsion-complete groups. As the author has shown [7], in this class of groups,
if the sum is infinite, the cotorsion hull is not fully transitive. Therefore
owing to the condition 4 from Mader’s theorem, the indicators cannot be
used to describe the lattice of fully invariant subgroups.

In [8], the lattice of fully invariant subgroups of the group T
¦

is studied
in the case where T is a countable direct sum of torsion-complete p-groups:

T =
∞⊕

j=1
Bj , (3)

where Bj is the basic subgroup of Bj , and B =
∞⊕

j=1
Bj is the basic subgroup

of T .
For a separable p-group T , the elements of the cotorsion hull T

¦
were

represented by A. I. Moskalenko [14] in the form of countable sequences

T
¦
=

{
(a0, a1 + T, . . . , ai + T, . . . ) | ai ∈ T̂ , pai+1 − ai ∈ T, i = 0, 1, . . .

}
.
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For such writing of elements, one can easily calculate the height and the
indicator. In particular, if a = (a0, a1 + T, . . . ), then

HT ¦ (a)=





HT̂ (a), if order O(a0) = ∞;
(hT̂ (a0), hT̂ (pa0), . . . , hT̂ (pn−1a0), ω+m,ω+m+1, . . .);
if a0 ∈ T̂\T, O(a0) = pn, O(a0 + T ) = pn−m;
(hT (a0), hT (pa0), . . . , hT (pn−1a0),

ω + n + k, ω + n + k + 1, . . . );
if O(a0) = pn, a0, a1, . . . , ak ∈ T, ak+1 6∈ T ;
HT (a0), if ai ∈ T for any i,

(4)

where ω is the least infinite ordinal number.
The torsion part of the group T

¦
consists of sequences (c, T, T, . . . ), where

c ∈ T , and the first Ulm subgroup involves sequences of type (o, a1+T, . . . ).
Let B = ⊕

α∈J
< xα > be a fixed basic subgroup of the separable p-group T .

If a ∈ T
¦
, a = (a0, a1 +T1, . . . ), then in the group B there exists a sequence

of elements (bi), i = 0, 1, . . . such that for any i,

bi =
s∑

j=1

mjxαj , 0 ≤ mj < p and ai = lim
n→∞

( n∑
s=0

psbi+s

)
. (5)

Such representation of the element a is called canonical. One says that the
sequence (bi) corresponds to the canonical representation of the element a.
The following statements are valid (see [14]).

Proposition 1. If HT ¦ (a) = (k0, k1, . . . ), (bi) is a sequence correspond-
ing to the canonical representation of an element a, and between ki and ki+1

there is a jump, then in the decomposition of bki−i with respect to the basis
{xα|α ∈ J} there is xα of order pki+1.

Proposition 2. If HT ¦ (a) is a sequence of natural numbers, then it has
an infinite number of jumps.

Let the group T be of the form (3) and a ∈ T
¦
(see (5)). By πi we denote

projection of the group T onto the direct sum Bi, and consider the sequence

πi(bj) = (bij), j = 0, 1, 2, . . . .

For every i ≥ 1, the sequence bi0, bi1, . . . , for fixed j defines the element
aij = lim

n→∞
∑n

s=0 psbij+s, whereas the elements ai0, ai1, . . . of the group

B̂i define the element a(i) = (ai0, ai1 + T, ai2 + T, . . . ) of the group T
¦
.

Obviously,

aj = lim
n→∞

n∑

i=1

aij .
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Note that using the given element a from (5), the elements a(i), i = 1, 2, . . .
are defined uniquely, since if (b′j)j≥0 is another sequence corresponding to
the element a, and (a0, a1 + T, . . . ) = (a′0, a

′
1 + T, . . . ), then a0 = a′0 (see

[14, §§1,2]), and if ak − a′k ∈ T , then π̂i(ak) = aik, π̂i(a′k) = a′ik and
aik − a′ik = π̂i(ak − a′k) ∈ T , k = 1, 2, . . . , where π̂i denotes the induced
projection on the group B̂i.

To every element a ∈ T
¦
we assign the matrix

Φ(a) = ‖H(ai0)‖i≥0,

where H(a00) = HT ¦ (a), and H(ai0) = HT̂ (ai0) for i ≥ 1.

Definition 1. The matrix ‖kij‖i,j≥0 composed of ordinal numbers and
symbols ∞ we call admissible with respect to the group T if the following
conditions are fulfilled:

1. The first row is an increasing sequence of ordinal, less than ω + ω,
numbers and symbols∞, and if k0j ≥ ω, then k0n+1 = k0n+1 for any n ≥ j;
other rows are increasing sequences of nonnegative integers or symbols ∞
(it is assumed that ∞+ 1 = ∞).

2. If in the first row k0n = ω + m is the first infinite ordinal number
and m < n, then in an infinite number of rows there appear nonnegative
integers, and there exists a row i0 such that kin−m = ∞ for i ≥ i0. When
k0n = ω+m, m ≥ n then starting from some i0, all rows are composed only
of the symbols ∞.

3. If all elements in a row are nonnegative integers, then we have infinitely
many jumps.

4. If between kij and kij+1 there is a jump, then in the group Bi there
exists a basis element of order pkij+1 (assuming B0 = B).

5. In every column kij → ∞ as i → ∞, and if k0j 6= ω + m, then
k0j = min{k1j , k2j , . . . }, while if k0j = ω + m, then k1j = k2j = · · · = ∞.

Taking into account equality (3) and Propositions 1 and 2, we can see
that for any a ∈ T

¦
the matrix Φ(a) satisfies the above conditions.

It follows from Definition 1 that we are concerned with three types of
matrices:

I.

[
k00 k01 · · ·
k10 k11 · · ·
. . . . . . . . . . . . .

]
,

where kij are the nonnegative integers or the symbols ∞;

II.




k00 k01 · · · · · · · · · · · · k0n−1 ω+m ω+m+1 · · ·
k10 k11 · · · · · · · · · · · · k1n−1 ∞ ∞ · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
kt0 kt1 · · · ktn−m−1 ∞ · · · ∞ ∞ ∞ · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


,

where m < n and kij are the nonnegative integers (see the first sentence of
point 2 in Definition 1);
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III.




k00 k01 · · · k0n−1 ω + n + k ω + n + k + 1 · · ·
k10 k11 · · · k1n−1 ∞ ∞ · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ki−10 ki−11 · · · ki−1n−1 ∞ ∞ · · ·
∞ ∞ · · · ∞ ∞ ∞ · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




,

where kij are nonnegative integers (see the second sentence of point 2 in
Definition 1).

By Ω we denote the set of matrices admissible with respect to T and
define on the set Ω a reflexive and transitive relation ≤ (see Definition 2).

Let K = ‖kij‖i,j=0,1,... be an admissible matrix. We perform the follow-
ing partitioning of rows i = 1, 2, . . . of the matrix K.

Let (k0is
, k0is+1), s = 1, 2, . . . be all jumps in the row k00.k01, . . . . All

j-th rows, where kjis = k0is for some s = 1, 2, . . . , are referred to be of
the first class. By taking minimum in every column, the remaining rows
form the sequence k1, k2, . . . . If this sequence does not possess the symbol
∞, then taking into account points 1,3 and 5 of Definition 1, we find that
it has infinitely many jumps which we denote by (kis

, kis+1), s = 1, 2, . . . .
In the second class, we combine all j-th rows, where kjis

= kis
, for some

s = 1, 2, . . . , and so on. Thus we obtain the uniquely defined partitioning
of rows of the matrix K into nonintersecting classes and call it the basic
partitioning of the matrix, and the classes of partitioning we call closed
classes. The row of the class we call a sequence which is obtained by taking
the minimum in every column of rows of the given class. We say that one
class is less than or equal to the other class if for their rows (ki) and (k′i) the
condition ki ≤ k′i, i = 0, 1, . . . is fulfilled. If we take into account that owing
to point 5 of Definition 1, in every j-th column bij →∞, as i →∞, it is not
difficult to see that for the rows of closed classes of the basic partitioning of
the matrix the condition ki ≤ k′i, i = 0, 1, 2, . . . is fulfilled, i.e., these classes
are linearly ordered.

Below we present an example of an admissible matrix K. It is shown
that 26 rows and the first closed class form the rows with numbers 1,2,4; the
second class forms rows with numbers 3,5,6,7; the third class form rows with
numbers 8,10,11; the fourth class forms rows with numbers 17,19,22,23,24,25,
26. All this is marked by Roman numerals on the right-hand side of the ma-
trix along the corresponding rows (we mean that in places with dots there
are positive integers preserving closure of visible classes).
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The following table illustrates rows of the aforementioned closed classes
and their linear ordering.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...

I 0 1 3 4 5 6 7 9 10 11 13 14 16 17 19 20 22 24 26 29 30 32 ...

II 1 2 3 5 7 8 9 11 12 13 15 16 18 19 20 21 23 25 27 29 31 32 ...

III 1 2 4 6 7 8 12 13 14 15 16 18 19 22 23 24 27 28 29 33 34 35 ...

IV 2 3 5 6 7 9 12 13 15 18 19 20 21 24 25 29 30 31 33 37 38 39 ...

V 2 6 7 8 10 15 16 17 23 24 25 26 28 30 32 33 35 36 37 40 41 43 ...

VI 5 7 9 10 15 16 18 19 23 24 27 28 35 36 39 40 43 46 47 48 51 53 ...

An infinite increasing sequence of nonnegative integers ki10, ki21,
. . . , kinn−1, . . . of the admissible matrix K is said to be a distributed in-
dicator of that matrix if the indices ij ≥ 1 take the values from an infinite
number of different rows, and if between kijj−1 and kij+1j there is a jump,
then in the basic subgroup Bij

of the group Bij
there exists a basic element

of order pkijj−1+1.
For example, if in the aforementioned matrix K we take the elements 010,

111, 322, 423, 524, 625, 726, 1237, 1338, 1439, 166.10, 188.11, 229.12, 2512.13,
2612.14, 3313.15, 3511.16, 3616.17, 4717.18, 4922.19, 5423.20, 5523.21, 5824.22,
5924.23, 6225.24, 6426.25, . . . which create a distributed indicator and if under
the dots we mean that the admissible matrix K, as i, j → ∞, has positive
integers, passing by means of a jump from the element of one row to that
of the other row, we find that in the first row following after that element
there is a jump.

Definition 2. Let K = ‖kij‖, K ′ = ‖k′ij‖, i, j = 0, 1, . . . , be admissible
matrices with respect to the subgroup T , and k0j ≤ k′0j . We say that K ≤
K ′, if to every row of finite closed class of the matrix K ′ there corresponds
a less or equal row of the closed class of the matrix K, and to the row of an
infinite closed class of the matrix K ′ there corresponds a less or equal row
of the closed class of the matrix K, or the distributed indicator. Thus the
following conditions are fulfilled:

If the row
(k0, k1, . . . ) (6)

of a finite closed class α of the matrix K consists of only nonnegative integers
and on that row are mapped the rows of closed classes α′i ≤ α′2 ≤ . . . of
the matrix K ′, where for every i the row of the class α′i does not likewise
contain symbol ∞, while U

i
α′i contains infinite number of rows of the matrix

K ′, then there is an index n ≥ 1 such that
n−1

U
i=1

α′i contains finite number of
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rows of the matrix K ′ (assuming the class α0 does not contain rows), and
for the row

(k′i, k
′
2, . . . ) (7)

of the class α′n the sequence (6) contains jumps (kti , kti+1, ), whereas the
sequence (7) contains the numbers k′mi

, i = 1, 2, . . . ) such that mi = 0,

kti − ti ≤ k′mi
−mi, ti − (mi+1 − 1) ≥ 0 and

ti −mi+1 →∞ as i →∞.

It can be easily seen that the relation ≤ on the set Ω is reflexive and
transitive (see [8]), therefore the relation

U ρ V =
det

[U ≤ V and V ≤ U ]

is an equivalence relation on the set Ω, and the relation ≤
U ≤ V =

det
U ≤ V

defined on the quotient set Ω = Ω/p is an ordering.
If U, V ∈ Ω, where U = ‖uij‖ and V = ‖vij‖ are admissible matrices,

we define the greatest lower bound inf(U, V ) = U ∧ V = W , where W =
‖min(uij , vij)‖ = ‖wij‖, i, j = 0, 1, . . . . Then the set Ω turns into a meet-
semilattice. It is shown in [8] that the function Φ : T

¦ → Ω, Φ(a) = Φ(a)
defined on the group T

¦
, where T has the form (3) and Ω is the set of

admissible matrices with respect to T , satisfies all the conditions of Theo-
rem 1. Thus the following theorem is valid.

Theorem 2. The lattice of fully invariant subgroups of a cotorsion hull
T

¦
, where T is a countable direct sum of torsion-complete p-groups, is iso-

morphic to the lattice of filters of the semilattice Ω.

As mentioned above, the reduced cotorsion p-adic module has the form
(2), where for the sake of simplicity we omit the index p,

A = T
¦ ⊕ C (8)

and assume that the group T has the form (3). Let us now investigate the
lattice of fully invariant subgroups of the group (8). Towards this end, we
consider the set

Ω
¦
= Ω ∪H, (9)

where Ω is the semilattice mentioned in Theorem 2, and H is the set of
increasing sequences of nonnegative integers with only a finite number of
jumps, and if between ki and ki+1 there is a jump, then in the basis subgroup
B of the group T there is a basis element of order pki+1.

As is known, the elements of the set Ω are the classes of admissible
matrices, where the first row is defined uniquely. On the set Ω

¦
we define

the relation ≤. If K and K ′ ∈ Ω, then K ≤ K ′ is defined just as in the
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set Ω. In the remaining cases should be fulfilled the condition ki ≤ k′i,
i = 0, 1, . . . , where (ki), (k′i) are the first rows of the matrices from the
classes of the set Ω, or the sequences from H. The aforementioned relation
is, of course, the order relation on the set Ω

¦
.

If K, K ′ ∈ Ω, then the greatest lower bound of the elements inf(K, K ′)
can be defined in the same way as in the set Ω. If K ∈ Ω and H =
(k′0, k

′
1, . . . ) ∈ H are known, then inf(K, H) = min(k0j , k

′
j), where (k0j)j≥0

is the first row of the admissible matrix K. Taking into account the defini-
tion of the matrix K, we can see that inf(K,H) ∈ H.

Analogously we define inf(H1,H2), if H1 and H2 ∈ H. It can be easily
seen that this definition satisfies all the requirements of the greatest lower
bound. Hence the set Ω

¦
is a meet-semilattice.

Consider the mapping
Φ

¦
: A → Ω

¦
(10)

which assigns Φ(a) to every element a ∈ T
¦
, and if a = t + c, where c 6= 0,

c ∈ C, t ∈ T
¦
, then Φ

¦
(a) = H(a), where H(a) is the p-indicator of element

a. Let us show that the function Φ
¦

satisfies all five conditions of Mader’s
theorem.

Condition 1. Φ
¦
is surjective.

Proof. Let K ∈ Ω, where K is an admissible matrix. Then by virtue of
[8,Condition 1], there exists a ∈ T

¦
such that Φ(a) = K. If H1 ∈ H,

H1 = (k0, k1, . . . ) and (kis , kis+1), s = 1, 2, . . . , n are all jumps in H1,
then we denote kis − is by λs. By the condition of the basic subgroup
B of the group T

¦
, there exist basis element xs of order pkis+1. Denote

a0 = pλ1x1 + pλ2x2 + · · · + pλnxn, a0 ∈ T . Taking into account that λ1 =
ki1−i1 = k0 and λs+1 = kis+1−is+1 = kis+1−(is+1), the indicator H(a0) =
(k0, k1, . . . , kin ,∞, . . . ). Since C is a reduced algebraically compact torsion
free group, there exists c ∈ C such that the height h(c) = kin+1−(in+1) (see
[2, Corollary 40.4]), then for the elements a = (a0, T, T, . . . ) ∈ T

¦
and c ∈ C,

a + c ∈ T
¦ ⊕ C and H(a + c) = (k0, k1, . . . ) = H1, i.e., Φ

¦
(a + c) = H1. ¤

Condition 2. If a ∈ A and f ∈ End A, then Φ
¦
(a) ≤ Φ

¦
(fa).

Proof. If a ∈ T
¦
, then we can see that T

¦
is a fully invariant subgroup in

A, and by virtue of [3, §108], an endomorphism of the group T is uniquely
extendable to that of the group T

¦
. Consequently, fa ∈ T

¦
, and as is shown

in [8], in this case Φ
¦
(a) ≤ Φ

¦
(fa).

If a = t + c, c 6= 0, t ∈ T
¦

then Φ
¦
(a) = H(a) is the indicator of the

element a, not decreasing under the endomorphism, since h(a) ≤ h(fa) (see
[2, §37]). ¤

Condition 3. Φ
¦
(a + b) ≥ Φ

¦
(a) ∧ Φ

¦
(b).
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Proof. Let a, b ∈ T
¦
, then a + b ∈ T

¦
and Φ

¦
(a + b) ≥ Φ

¦
(a) ∧ Φ

¦
(b) (by

virtue of [8, Condition 3]). If a = t + c, c 6= 0, t ∈ T
¦
, b ∈ T

¦
, then

a + b = t + b + c = t′ + c, t′ ∈ T . Let Φ
¦
(a) = H(a) = (l0, l1, . . . ) =

(min(t0, c0),min(t1, c1), . . . ), where H(t) = (t0, t1, . . . ), H(c) = (c0, c0 +
1, . . . ) (see [2, §37]). Denote Φ

¦
(b) = K. Φ

¦
(a) ∧ Φ

¦
(b) =

(min(l0, k0),min(l1, k1), . . . ), where (k0, k1, . . . ) is the first row of the ad-
missible matrix K. Φ

¦
(a + b) = H(t′) ∧ H(c), but H(t′) = H(t + b) ≥

(min(t0, k0), min(t1, k1), . . . ), therefore Φ
¦
(a + b) = H(t′) ∧ H(c) ≥

(min(t0, k0), min(t1, k1), . . . ) ∧H(c) = Φ
¦
(a) ∧ Φ

¦
(b).

Assume a = t + c is such as above, and b = t′ + c′, t′ ∈ T , 0 6= c′ ∈
C, H(t′) = (t′0, t

′
1, . . . ), H(c′) = (c′0, c

′
0 + 1, . . . ). Then Φ

¦ ∧ Φ
¦
(b) =

(min(t0, c0),min(t1, c0 + 1), . . . ) ∧ (min(t′0, c
′
0), min(t′1, c

′
0 + 1), . . . ) =

(min(t0, t′0, c0, c
′
0), min(t1, t′1, c0+1, c′0+1), . . . ), Φ

¦
(a+b) = Φ¦(t+t′+c+c′).

The right-hand side here, if c+c′ 6= 0, is any class M of admissible matrices,
or H(t + t′ + c + c′), otherwise. In the first case too, the first row of the
admissible matrix M equals H(t + t′ + c + c′). But H(t + t′ + c + c′) =
H(t + t′)∧H(c + c′) ≥ (min(t0, t′0),min(t1, t′1), . . . )∧ (min(c0, c

′
0),min(c0 +

1, c′0 + 1), . . . ) = Φ
¦
(a) ∧ Φ

¦
(b), which proves Condition 3. ¤

Condition 4. If a, b ∈ A, Φ
¦
(a) ≤ Φ

¦
(b), then there exists an endomor-

phism f of the group A such that fa = b.

Proof. In case a, b ∈ T
¦
, the validity of the condition follows from [8, Con-

dition 4]. Let a = t + c, t ∈ T
¦
, 0 6= c ∈ C and let b = t′ ∈ T

¦
and

Φ
¦
(b) = K ′, where the admissible matrix K ′ has the form I, and its first

row is (k′00, k
′
01, . . . , k

′
0n, . . . ).

Let

Φ
¦
(a) = H(a) = H(t + c) = (k0, k1, . . . , kn, kn+1, kn+1 + 1, . . . ). (11)

For the element a = t+c we assume that (bi)i≥0 is a sequence corresponding
to the canonical representation t = (t0, t1+T, . . . ), ti = bi +pbi+1+p2bi+2+
. . . , i = 0, 1, . . . , bi ∈ B, where B is the basic subgroup of the group T

¦
.

Since equality (11), starting from kn+1, has no jump, the indicator terms
h(a), h(pa), . . . , h(pna) are obtained from the heights h(t), h(pt), . . . , h(pnt).
Taking into account (4), we can single out from the element t0 ∈ T̂ a
finite number of summands t

(1)
0 = b0 + pb1 + · · · + pkbk. Thus H(b(1)

0 ) =
(k0, k1, . . . , kn,∞, . . . ). Obviously, t

(1)
0 ∈ B and t0 = t

(1)
0 + t

(2)
0 , t

(2)
0 =

pk+1bk+1 + · · · ∈ T̂ , whence t = (t0, t1 + T, . . . ) = (t(1)0 , T, . . . ) + (t(2)0 , t1 +
T, . . . ), where h(t(2)0 , t1 + T, . . . ) ≥ kn+1 − (n + 1).

Analogously, let t′ = (t′0, t
′
1 + T . . . ) and (b′i)i≥1 be its corresponding se-

quence of the basic subgroup B. Then t′i = b′i + pb′i+1 + . . . , i = 0, 1, . . . .
Since by the condition, Φ

¦
(a) = H(a) = (k0, k1, . . . , kn, kn+1, kn+1+1, . . . ) ≤
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H(t′) = (k′00, k
′
01, . . . ), therefore t′0 = b′0+pb′1+. . . can be represented in the

form t′0 = t
′(1)
0 +t

′(2)
0 , where t

′(1)
0 = b′0+pb′1+· · ·+pmb′m, t

′(2)
0 = pm+1b′m+1+

. . . and H(t
′(1)
0 = (k′00, . . . , k

′
0n,∞, . . . ). Obviously, t

′(1)
0 ∈ B. Then t′ =

(t
′(1)
0 , T, . . . ) + (t

′(2)
0 , t′1 + T, . . . ) and h(t

′(2)
0 , t′1 + T, . . . ) ≥ kn+1 − (n + 1).

We have H(t1)0 ) ≤ H(t
′(1)
0 ), t

(1)
0 , t

′(1)
0 ∈ B and since the separable subgroup

B is fully transitive (see [3, §65]), there exists its endomorphism f
(1)
0 de-

fined by a finite number of elements b0, b1, . . . , bk ∈ B which transfer t
(1)
0 to

t
′(1)
0 . It is evident that the elements b0, b1, . . . , bk are defined by means of a

finite number of elements (xα). For the remaining basic elements xβ we put
f

(1)
0 xβ = 0. Thus we obtain a uniquely defined endomorphism (see [3, §108])

of the group T
¦
for which f

(1)
0 t

(1)
0 = t

′(1)
0 , and f

(1)
0 t

(2)
0 = (t∗0, T, . . . ) ∈ B ⊂ T ,

h(t∗0) ≥ kn+1 − (n + 1). Obviously, f
(1)
0 ti ∈ B ⊂ T , i = 1, 2, . . . .

We have h(c) = (kn+1 − (n + 1)) ≤ h((t
′(2)
0 , t′1 + T, t′2 + T, . . . ) − t∗0).

Since C is an algebraically compact torsion free p-adic module, c ∈ C can
be embedded into the direct summand Jp (see [2, §40.4, §51.1]), and there
exists f ∈ EndA such that fc = (t

′(2)
0 , t′1 + T, t′2 + T, . . . ) − (t∗0, T, . . . ) and

f |T ¦
= f

(1)
0 on the direct summand T

¦
. Then

fa = f(t + c) = ft + fc = f
(
(t(1)0 , T, . . . ) + (t(2)0 , t1 + T, . . . )

)
+

+ (t
′(2)
0 , t′1 + T, . . . )− (t∗0, T, . . . ) = f

(1)
0

(
(t(1)0 , T, . . . )

)
+

+ f
(1)
0

(
(t(2)0 , t1 + T, . . . )

)
+ (t

′(2)
0 , t′1 + T, . . . )− (t∗0, T, . . . ) =

= (t
′(1)
0 , T, . . . ) + (t∗0, T, . . . ) + (t

′(2)
0 , t′1 + T, . . . )− (t∗0, T, . . . ) =

= (t′0, t
′
1 + T, . . . ) = b.

It is not difficult to see that in the same way as above we can consider the
cases for a = t + c, or a = c, b = t1 + c1, or b = c1, t, t1 ∈ T ∗, c, c1 ∈ C. ¤

Condition 5. If G is a fully invatiant subgroup in A and a, b ∈ G, then
there exists c ∈ G such that Φ

¦
(c) = Φ

¦
(a) ∧ Φ

¦
(b).

Proof. Since G is a fully invariant subgroup of the group A, by virtue of [2.
§9],

G = (G ∩ T
¦
)⊕ (G ∩ C). (12)

As we mentioned when proving Condition 2, T
¦
is a fully invariant subgroup

in A. Therefore G ∩ T
¦

is a fully invariant subgroup of the group A. Let
a = t1 + c1, b = t2 + c2 and at least one of c1, c2 6= 0. Then by (12),
t1, t1 ∈ G ∩ T

¦
, c1, c2 ∈ G ∩ C. According to [8, Condition 5], there exists

t ∈ G∩T
¦
such that Φ

¦
(t) = Φ

¦
(t1)∧Φ

¦
(t2). c1 and c2 are elements of infinite

order from C, therefore H(c1)∧H(c2) is equal either to H(c1) or to H(c2).
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If it is H(c1), then t + c1 ∈ G and Φ
¦
(t + c1) = H(t) ∧ H(c1) = H(t1) ∧

H(t2)∧H(c1)∧H(c2) = (H(t1)∧H(c1))∧ (H(t2)∧H(c2)) = Φ
¦
(a)∧Φ

¦
(b).

If both c1 and c2 are equal to zero, then the condition will be fulfilled by
virtue of [8, Condition 5]. ¤

As we mentioned concerning the equality (8), the group T has the form
(3) and for the sake of simplicity we omitted the index p. The same can be
done regarding (9) and (10). As far as our next step is to consider the direct
sum of torsion-complete groups, we revert to the index p and formulate the
obtained results.

Thus we have found that the function Φ
¦
p : Ap → Ω

¦
p, where Ap = T

¦
p⊕Cp,

and Tp is of the form (3), satisfies all five conditions of Mader’s theorem.
Thus the following theorem is valid.

Theorem 3. The lattice of fully invariant submodules of the reduced
cotorsion p-adic module Ap, whose torsion part is a countable direct sum of
torsion-complete p-adic modules, is isomorphic to the lattice of filters of the
semilattice Ω

¦
p.

Corollary 1. The lattice of fully invariant subgroups of a reduced co-
torsion group Ap, whose torsion part is a countable direct sum of torsion-
complete p-groups, is isomorphic to the lattice of filters of the semilattice
Ω

¦
p.

As mentioned above, a reduced cotorsion group A has the form (1), where
T = ⊕

p
Tp is the torsion part of the group A.

A torsion group Ti is said to be torsion-complete if its p-component Tip

is a torsion-complete p-group for every p. Ti = ⊕
p
Tip. Let T be a countable

direct sum of torsion-complete groups

T =
∞⊕

i=1
Ti =

∞⊕
i=1

(
⊕
p

Tip

)
= ⊕

p

( ∞⊕
i=1

Tip

)
.

Then T us such a torsion group whose every p-component is a countable
direct sum of torsion-complete p-groups. Consequently, if the torsion part T
of a reduced cotorsion group A is a countable direct sum of torsion-complete
groups, then it will be of the form (1), where every Tp is a direct sum of
torsion-complete p-groups, and Cp is an algebraically compact torsion free
group.

Obviously, for every prime number p there exists a semilattice Ωp de-
scribed in Theorem 3, which corresponds to the group T

¦
p ⊕ Cp.

Consider the set
Ω

¦
=

∏
p

Ω
¦
p.

For its elements α = (. . . , αp, . . . ) and β = (. . . , βp, . . . ) we put α ≤ β ⇔
αp ≤ βp and α ∧ β = (. . . , αp ∧ βp, . . . ) for all αp, βp ∈ Ω

¦
p. Thus the set
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Ω
¦
turns into a meet-semilattice. As mentioned above, every group T

¦
p⊕Cp

is at the same time a reduced cotorsion p-adic module, therefore it is q-
divisible, where q 6= p is a prime number. Indeed, for every natural number
n, qn is a p-adic unit (see [2, §3]), hence there exists q−n ∈ Q

∗
p, and for all

a ∈ T
¦
p ⊕ Cp, a = qn · q−na = qn(q−na) = qnb, b ∈ Q

∗
p; i. e. a is divisible by

qn.
On the other hand, any endomorphism f of the ring of endomorphisms

E(A) of the group A can be written in the form (. . . , fp, . . . ), where fp ∈
E(Ap). Indeed, since every Ap, q 6= p is divisible, therefore Ap is a fully
invariant subgroup in A, and A/ ⊕ Ap is a divisible group. Consider the
mapping

α : E(A) → E(A2)× E(A3)× · · · × E(Ap)× . . . , αf = (. . . , fp, . . . ),

where fp = f |Ap is restriction of f on Ap. Obviously, α is an endomorphism.
If f 6= g and αf = αg, f, g ∈ E(A), then by the definition of fp and gp,
⊕
p
Ap ⊂ Ker(f − g) and Im(f − g) ∼= A/Ker(f − g) is a divisible group,

since A/⊕
p

Ap is divisible. On the other hand, A is a reduced group, hence

f − g = 0, i. e. f = g. Thus α is an isomorphism. Consequently, any
endomorphism f of the group A can be written as follows: f = (. . . , fp, . . . ).

Thus after all the above remarks we can easily see that since for every
p the function Φp : Ap → Ω

¦
p satisfies the conditions of Theorem 1, the

function Φ : A → Ω
¦
, Φ(a) = (. . . , Φp(ap), . . . ), ap ∈ Ap likewise satisfies

these conditions. Thus the following theorem is valid.

Theorem 4. If the torsion part of a reduced cotorsion group A is a
countable direct sum of torsion-complete groups, then the lattice of fully
invariant subgroups of the group A is isomorphic to the lattice of filters of
the semilattice Ω

¦
.
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