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Abstract

We study fully transitive abelian groups, their direct sums and
direct products.

Introduction

Fully transitivity is one of interesting properties of abelian groups (an
abelian group A is said to be fully transitive if for all elements a, b ∈ A for
which H(a) � H(b) there exists an endomorphism of the group A mapping
a into b). This concept was introduced by Kaplansky in [17] for reduced
modules over a complete discrete valuation ring and for abelian p-groups.
He proved that any reduced separable p -group is fully transitive. Furhter,
Kaplansky puts a question: is an arbitrary abelian p -group fully transitive?
First negative examples were presented by Megibben [20]. Hill [14] demon-
strated that totally projective p -groups introduced by Nunke [23] are fully
transitive. Corner [5] considered the following concept: let Φ be a subring
of the ring E (G) and H be a Φ-invariant subgroup of a reduced p -group G,
then Φ is fully transitive on H if for arbitrary elements x, y ∈ H such that
UG(x) � UG(y) there exists φ ∈ Φ with the property φx = y. He proved that
a p -group G is fully transitive if and only if E (G) is fully transitive on pωG
and presented an example of a reduced p -group which is not fully transitive.

Let λ be the limit ordinal. An abelian p -group G is said to be λ-separable
(le Borgne [16]) if each its finite system of elements is contained in a certain
direct summand of the group G and this summand is a totally projective
group of length less than λ. Le Borgne proves that each λ-separable group
is fully transitive.
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Hill and Megibben [15] described IT -groups (they say that a p -group G is
an IT -group if it is isomorphic to an isotype subgroup of a totally projective
group); in particular, they proved that all IT -group are fully transitive.

Krylov [36], by analogy with fully transitive p -groups, considered the
concept of fully transitivity for torsion free groups. Arnold [1] described ho-
mogeneous fully transitive torsion free finite rank groups. Krylov in [37, 40]
presented the description of fully transitive countable homogeneous torsion
free groups and fully transitive torsion free groups whose p -rank (i.e., rank of
the group G/pG) is finite. This generalized the results obtained by Dobrusin
[34]. Krylov considered non-homogeneous fully transitive torsion free groups
in [38, 40], and in [39] he constructed an example of super-decomposable
fully transitive groups. Chekhlov [50] obtained a characterization of ful-
ly transitive torsion free groups all non-zero endomorphisms of which are
monomorphisms.

An important subclass of the class of fully transitive groups is the class of
quasi-pure injective groups (qpi-groups), i.e., groups A such that all homo-
morphisms of each pure subgroup B in A can be extended to an endomor-
phism of the group A. The study of qpi-groups is announced as Problem 17a
in the book [46]. Torsion full groups, whose structure is known, are reduced
torsion qpi-groups. Torsion free qpi-groups were described by Chekhlov [48,
49]. Mixed qpi-groups were studied by Dobrusin [33].

The case of mixed fully transitive groups was first considered in Mader’s
work [19], where he proves that reduced p -adic algebraically compact groups
are fully transitive.

Moskalenko [44] studied the group Ext(Z(p∞), T ) and demonstrated that
it is fully transitive in the case when T is a direct sum of cyclic p -groups.

Fully transitive p -groups were also considered in papers by Griffith [11],
Meggiben [21], Carroll and Goldsmith [4], Files and Goldsmith [10], Paras
and Strüngmann [24]. Torsion free fully transitive were investigated by Grin-
shpon [29], Hausen [12], Dugas and Hausen [7], Dugas and Shelah [8]. Fully
transitive torsion free modules were studied in Files’ work [9]. Hennecke and
Strüngmann [13] considered fully transitive p -local modules. Fully transitive
separable abelian groups and their direct products are characterized in the
paper of Grinshpon and Misyakov [32]. Fully transitivity of direct sums and
direct products of arbitrary abelian groups was considered in the papers of
Grinshpon and Misyakov [31], Misyakov [42]. The work by Grinshpon [30]
presents the description of fully invariant subgroups and their lattices for ful-
ly transitive groups from different classes of abelian groups and the properties
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of fully transitive groups which are k-direct sums of abelian groups. A survey
of results on fully transitive groups and groups close to them can found in
[28]. Some problems on fully transitive abelian groups are mentioned in the
book [18]. In particular, Problem 45 is stated as follows: ”Find necessary
and sufficient conditions for fully transitivity of the direct sum

∑
i∈I

⊕Gi and

product
∏
i∈I

Gi of groups Gi”.

This paper presents main results obtained by the author on fully tran-
sitive abelian groups in different years and connected with the above-stated
problem. In the first section, we present necessary and sufficient conditions
for fully transitivity of direct sums of arbitrary abelian groups and sufficient
conditions for fully transitivity of direct products of such groups. In the
second section we describe fully transitive direct products of generalized sep-
arable torsion free groups. In the third section, fully transitivity of direct
products of s-generalized slender groups is studied. In the fourth section
we present a complete description of fully transitivity of direct products of
arbitrary separable groups. We investigate influence of fully transitivity on
splitability of direct products of bf -generalized slender groups and on sepa-
rability of direct products of groups.

The proofs are significantly revised and standardized.
The designations are as follows. N is the set of natural numbers; Z is the

group of integers; Z(p∞) is the quasicyclic group; π is the set of all prime
numbers; o(a) is the order of the element a; hp(a) (h∗p(a)) is the height (gen-
eralized height) of the element a; Hp(a) is the Ulm sequence of the element
a; χA(a) or χ(a) is the characteristic of the element a in a torsion free group
A; HA(a) or H(a) is the height matrix of the element a in the group A;
E (A) is the endomorphism ring of the group A, Hom(A, B) is the group of
homomorphisms from the group A to the group B; tA(a) or t(a) is the type
of the element a in a torsion free group A; t(A) is the type of a homogeneous
torsion free group; π(A) is the set of prime numbers p such that pA �= A;
T (A) is the torsion subgroup of the group A; Tp(A) is the p -component of
the group A. Designations and terms that are used without explanation are
standard and taken from [46, 47]. All the groups are supposed to be abelian.
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§1. Fully transitivity of direct sums and direct products of
abelian groups

In this section, a criterion for fully transitivity of direct sums of abelian
groups is established and sufficient conditions for fully transitivity of direct
products of arbitrary reduced abelian groups are presented. An example
demonstrates existence of fully transitive direct products of reduced groups
for which one of sufficient conditions for fully transitivity is not satisfied.

Let p1, p2, . . . , pn, . . . be a sequence of all prime numbers in their increas-
ing order. We recall that h∗p(a) = σ (where σ is an ordinal), if a ∈ pσA\pσ+1A.
In the case a ∈ pτA = pτ+1, we, as usual, put h∗p(a) = ∞ and suppose that
∞ is more than any ordinal. The matrix of dimensions ω×ω whose elements
are ordinal numbers or a symbol ∞ is said to be the height matrix. Such a
matrix

(αij) =

⎛
⎜⎜⎝
α11 α12 . . . α1n . . .
. . . . . . . . . . . . . . . . . . . . . . .
αn1 αn2 . . . αnn . . .
. . . . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎠

can be interpreted as a function f : N × N → On ∪ {∞} (where On is the
class of all ordinals) such that f(i, j) = αij . The class of all height matrices
is denoted by M. Let M1, M2 ∈ M, M1 = (αij), M2 = (βij), then we say

that M1 ≤ M2 if αij ≤ βij for all i, j ∈ N. If M ′ = {(α(r)
ij ) | r ∈ K} is a

set of height matrices, we naturally define inf�M
′, namely, inf�M

′ = (βij),

where βij is the least of the elements α
(r)
ij , r ∈ K. An element a of the group

A can be connected with a height matrix

H(a) =

⎛
⎜⎜⎝

h∗p1
(a) h∗p1

(p1a) . . . h∗p1
(pk

1
a) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
h∗pn

(a) h∗pn
(pna) . . . h∗pn

(pk
na) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎠ = (σij).

The nth string of the matrix H(a) is said to be the pn-indicator of the element
a and denoted by Hpn(a).

Fuchs [47], following Kaplansky [17], calls a reduced abelian p -group a
fully transitive group if for all its elements a and b for which Hp(a) ≤ Hp(b)
there exists an endomorphism ϕ mapping a to b. We can introduce the
concept of fully transitivity for an arbitrary abelian group by analogy, i.e.,
we can call an abelian group G fully transitive if for all elements a, b ∈ G
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such that H(a) ≤ H(b) there exists ϕ ∈ E (G) with the property ϕ(a) = b.
However, even for rather simple non-reduced groups, we obtain that they are
not fully transitive in the sense of this definition.

Let us consider a simple example. Here, as it is commonly accepted [46,
47], we suppose that the generalized p -height of the zero element coincides
with its usual p -height and equals ∞.

Example 1.1. Let G =< a > ⊕Z(p∞n ), where o(a) = ps
n and b ∈ Z(p∞n ),

o(b) = pk
n, k > s. We have H(a) < H(b), because Hpn(a) = (0, 1, . . . , s −

1, ∞, . . . ), Hpn(b) = (∞, . . . ) and Hpi
(a) = Hpi

(b) = (∞, . . . ) for all i �= n.
However, there are no ϕ ∈ E (G) such that ϕ(a) = b, because an endomor-
phism does increase order of an element.

Definition 1.1. (Grinshpon [31]) A group G is said to be fully transitive

if for all a, b ∈ G the condition H(a) ≤ H(b) and o(a)
... o(b) (order of the ele-

ment a is divided by that of the element b) implies existence of ϕ ∈ E (G) such

that ϕ (a) = b. Here we suppose that if o(a) = ∞, the condition o(a)
... o(b) is

satisfied for each b ∈ G.
Proposition 1.1. (Grinshpon [31]) For a reduced group G, the following

are equivalent:

1) for all a, b ∈ G, the condition H(a) ≤ H(b) and o(a)
... o(b) implies exis-

tence of ϕ ∈ E (G) such that ϕ (a) = b;
2) for all a, b ∈ G, the condition H(a) ≤ H(b) implies existence of ϕ ∈ E(G)
such that ϕ (a) = b.

Let’s demonstrate that the question about fully transitivity of a group
can be considered as a corresponding question for its reduced subgroup.

Theorem 1.2. A group G is fully transitive if and only if its reduced
subgroup is fully transitive.

Proof. If G is a fully transitive group, fully transitivity of its reduced
subgroup easily follows from Definition 1.1. Conversely. Let G = A ⊕ B,
where A is the reduced subgroup of the group G, B is its divisible subgroup.
Consider arbitrary non-zero elements a, b ∈ G such that H(a) ≤ H(b) and

o(a)
... o(b). Let a = a1+b1, b = a2+b2 and 1) a1 �= 0, a2 �= 0, where a1, a2 ∈ A;

b1, b2 ∈ B. Then H(a) = H(a1), H(b) = H(a2) and H(a1) ≤ H(a2). So,
existence of ϕ ∈ E (A) such that ϕ(a1) = a2 follows from fully transitivity
of the group A. Now we can extend ϕ to an endomorphism ψ ∈ E (G),
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supposing ψ(c) = ϕ(c) if c ∈ A, and ψ(c) = 0 if c ∈ B.
2) a1 �= 0, a2 = 0 and let o(a) < ∞ (the case o(a) = ∞ is proved

similarly). Consider the subgroup < a >⊂ G. Construct a mapping ϕ :<
a >−→ B by the following rule: ϕ(a) = b. It is defined correctly because

if ma = 0 for a certain m ∈ N, then m
... o(a) and, consequently, m

... o(b).
Then ϕ(0) = ϕ(ma) = mϕ(a) = mb = 0. It is easy to verify that ϕ is
a homomorphism. Let ρ :< a >−→ G be an embedding. Since B is an
injective group, there exists ψ ∈ Hom (G, B) such that ψρ = ϕ, i.e., ψ(a) = b.

3) The case a1 = 0, a2 �= 0 is impossible.

4) Let a1 = 0, a2 = 0, i.e., a, b ∈ B and o(a)
... o(b). Consider the sub-

groups < a >, < b > from B. There exists a homomorphism ϕ :< a >−→
< b > such that ϕ(a) = b. Let i :< a >−→ B be an embedding. Since
B is an injective group, ψi = ϕ for a certain ψ ∈ E (B), and ψ(a) = b.
The endomorphism ψ evidently can be extended to an endomorphism of the
group G. Thus, the group G is fully transitive.

As follows from Theorem 1.2, fully transitivity of groups can be studied
by use of only reduced groups. So, in the sequel, by a group we mean a
reduced groups.

We give two main concepts which will be used in studying fully transitiv-
ity of direct sums and direct products. They were first formulated by S. Ya.
Grinshpon [29] for torsion free groups. Later and independently the first of
them appeared in the work of Files and Goldsmith [10].

Definition 1.2. A system of groups {Gi}i∈I is said to be fully transitive
if for each pair of groups (Gi, Gj)i, j∈I (i can coincide with j) the following
condition is satisfied: from a ∈ Gi, b ∈ Gj and H(a) ≤ H(b) follows existence
of ϕ ∈ Hom(Gi, Gj) with the property ϕ(a) = b.

Definition 1.3. We say that a system of groups {Gi}i∈I satisfies the
monotonicity condition for height matrices if for each group Gj and each el-
ement 0 �= aj ∈ Gj (j ∈ I) the relations
1) inf�{H(ai1), . . . ,H(ais)} ≤ H(aj), where aik ∈ Gik , ik ∈ I, k = 1, s,
ik �= il, k �= l;
2) H(aj) � H(ak) for all k = 1, s,
imply existence of the elements aj1 , . . . , ajr ∈ Gj with the following proper-
ties:
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1’) aj1 + . . .+ ajr = aj;
2’) for each element ajl

(l = 1, r) there exists an element aik (k = 1, s) such
that H(ajl

) ≥ H(aik).

Instead of the phrase ”monotonicity condition for height matrices” we’ll
often write simply ”monotonicity condition”. It is easy to show that if a
system of groups is fully transitive, each its subsystem is also fully transitive.
If a system of groups satisfies the monotonicity condition, each its subsystem
also satisfies the condition.

Theorem 1.3. A group G = ⊕
i∈I
Gi is fully transitive if and only if the

system of groups {Gi}i∈I is fully transitive and satisfies the monotonicity
condition.

Proof. Let G be a fully transitive group. Consider arbitrary groups
Gα, Gβ ∈ {Gi}i∈I and elements gα ∈ Gα, gβ ∈ Gβ such that H(gα) ≤
H(gβ). Then H(ραgα) ≤ H(ρβgβ), where ρα : Gα −→ G, ρβ : Gβ −→ G, are
embeddings. Fully transitivity of the group G implies existence of ϕ ∈ E (G)
such that (ϕρα)(gα) = ρβ(gβ) and, therefore, (πβϕρα)(gα) = gβ, where πβ :
G −→ Gβ is a projection.

Let’s demonstrate that the system {Gi}i∈I satisfies the monotonicity con-
dition. Consider an arbitrary groupGj ∈ {Gi}i∈I and an element 0 �= aj ∈ Gj

such that inf�{H(ai1), . . . ,H(ais)} ≤ H(aj), H(aj) � H(ak) for all k = 1, s.
For each k = 1, s, consider embeddings ρik : Gik −→ G and ρj : Gj −→ G,
where Gik ∈ {Gi}i∈I and aik ∈ Gik . Then H(ρi1(ai1) + . . . + ρis(ais)) ≤
H(ρj(aj)), and fully transitivity of the group G implies existence of ϕ ∈ E (G)
such that ρj(aj) = ϕ(ρi1(ai1)+ . . .+ρis(ais)) = (ϕρi1)(ai1)+ . . .+(ϕρis)(ais).
We have aj = (πjρj)(aj) = (πjϕρi1)(ai1) + . . . + (πjϕρis)(ais), where πj :
G −→ Gj is a projection. Let ajk

= (πjϕρik)(aik) for all k = 1, s. Then
aj = aj1 + . . . + ajs, and for each element ajk

(k = 1, s) there exists an
element aik (k = 1, s) such that H(aik) ≤ H(ajk

). Conversely. Let a, b ∈ G,
and H(a) ≤ H(b). Let a = ai1 + . . .+ air , b = bl1 + . . .+ bln , where ait ∈ Git ,
blj ∈ Glj , it, lj ∈ I for all t = 1, r and j = 1, n. Let’s show that for each
element blj (j = 1, n) there exists ϕj ∈ Hom(G, GlJ ) such that ϕj(a) = blj .
Then b = (ϕj1 + . . . + ϕjn)(a) and ϕj1 + . . . + ϕjn ∈ E (G). If for the ele-
ment blj there exists an element aik such that H(blj ) ≥ H(aik), existence of
ψj ∈ Hom(Gik , Glj) with the property ψj(aik) = blj follows from fully tran-
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sitivity of the system {Gi}i∈I . Then we put ϕj(a) = ψj(aik), i.e., ϕj = ψjπik ,
where πik : G −→ Gik is a projection. Let there be no elements aik with the
property H(blj ) ≥ H(aik). Since H(blj ) ≥ inf�{H(aik)}k=1, r and the system
{Gi}i∈I satisfies the monotonicity condition, there exist elements bljτ

∈ Glj

(τ = 1, t) such that blj = blj1 + . . . + bljt
, and for each bljτ

(τ = 1, t) one
can find aikτ

∈ {aik}k=1, r such that H(bljτ
) ≥ H(aikτ

). Then fully transi-
tivity of the system {Gi}i∈I implies existence of ψjτ ∈ Hom(Gikτ

, Glj ) such
that ψjτ (aikτ

) = bljτ
, and ψj1(aik1

) + . . . + ψjt(aikt
) = blj . Then ϕj(a) =

ψj1(aik1
)+ . . .+ψjt(aikt

), where ϕj = ψj1πik1
+ . . .+ψjtπikt

, πikτ
: G −→ Gikτ

are projections. Thus, ϕj(a) = blj .

The following Proposition demonstrates that fully transitivity and ful-
filment of the monotonicity condition for the system of groups {Gi}i∈I are
necessary for fully transitivity of a direct product of arbitrary groups.

Proposition 1.4. If G =
∏
i∈I

Gi is a fully transitive group, the system

{Gi}i∈I is fully transitive and satisfies the condition of monotonicity.

Proof of this statement is similar to proof of necessity in the previous
theorem.

The following Definition will be useful to elucidate some sufficient condi-
tions for fully transitivity of the group G =

∏
i∈I

Gi.

Definition 1.4. We say that a system of groups {Gi}i∈I satisfies the
condition of finiteness for height matrices, if for each group Gj ∈ {Gi}i∈I

and each element 0 �= gj ∈ Gj such that o(gj) = ∞ the conditions

H(gj) ≥ inf �{H(gγ)}γ∈J , where |J | = ℵ0 J ⊆ I,

imply existence of a finite subsystem of elements {gγk
}γk∈J, k=1, n such that

H(gj) ≥ inf �{H(gγk
)}γk∈J, k=1, n .

Sometimes, instead of the term ”condition of finiteness for height matri-
ces” we write simply ”condition of finiteness”.
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Proposition 1.5. A group G =
∏
i∈I

Gi is fully transitive, if the system of

groups {Gi}i∈I is fully transitive and satisfies the conditions of monotonicity
and finiteness.

Proof. Let a, b ∈ G and H(a) ≤ H(b), where a = (. . . , ai, . . . ), b =
(. . . , bi, . . . ). Let’s demonstrate that for an arbitrary coordinate bj of the ele-
ment b there exists a finite subsystem of coordinates {ail}l=1, n of the element
a such that H(bj) ≥ inf�{H(ail)}l=1, n. Consider two cases: 1) o(bj) < ∞,
2) o(bj) = ∞, here we assume that almost all the coordinates ai of the
element a are different from zero. Let o(bj) < ∞. Since the height ma-
trix H(bj) contains a finite number σnk of ordinals different from ∞ and
H(bj) ≥ inf�{H(ai)}i∈I , there exists a finite subset {ail}l=1, n ⊂ {ai}i∈I

such that H(bj) ≥ inf�{H(ail)}l=1, n. If o(bj) = ∞, then, taking into ac-
count the inequality H(bj) ≥ H(a) and the fact that the height matrix of
every element of a group consists of at most countable set of ordinals, we
prove existence of the subset {aτ}τ∈J ⊆ {ai}i∈I , where |J | ≤ ℵ0, such that
H(bj) ≥ inf�{H(aτ )}τ∈J . Let |J | = ℵ0. Since the system {Gi}i∈I satisfies the
condition of finiteness, there exists a finite subset {aτl

}l=1, m ⊂ {aτ}τ∈J such
that H(bj) ≥ inf�{H(aτl

)}l=1, m.
Let’s demonstrate that there exists ψ ∈ E (G) such that ψ(a) = b. To

do this, it is sufficient to see that for an arbitrary coordinate bj of the ele-
ment b there exists a homomorphism ψj ∈ Hom(G, Gj) such that ψj(a) = bj .
Then, by [46, Theorem 8.2], existence of the required homomorphism ψ fol-
lows. Let H(bj) ≥ inf�{H(aik)}ik∈I, k=1, n , where bj ∈ Gj, aik ∈ Gik . Since
the system {Gi}i∈I is fully transitive and stisfies the condition of mono-
tonicity, the subsystem {Gj, Gik}k=1, n, where Gj �= Gik for all k = 1, n,
is also fully transitive and satisfies the condition of monotonicity. There-

fore, the group G′ = Gj ⊕
n⊕

k=1
Gik , as it follows from Theorem 1.3, is ful-

ly transitive. So there exists a homomorphism ψ′
j ∈ Hom(G′, Gj) such

that (ψ′
jρ

′)(ai1 + . . . + ain) = bj , where ρ′ :
n⊕

k=1
Gik −→ G′ is an embed-

ding, ψ′
j = π′

jψ
′′
j , π′

j : G′ −→ Gj is a projection, and ψ′′
j ∈ E (G′), where

(ψ′′
j ρ

′)(ai1 + . . .+ ain) = ρj(bj), ρj : Gj −→ G′ is an embedding. Since G′ is
a direct summand of the group G, one can extend the homomorphism ψ′

jρ
′

to a homomorphism ψj ∈ Hom(G, Gj), mapping a to the element bj . And if
the group Gj coincide with one of the groups Gik , k = 1, n, similar reasoning
for the subsystem {Gik}k=1, n , yield the homomorphism ψj ∈ Hom(G, Gj),

9



which maps the element a to the element bj .

The following example shows that there exists a fully transitive group
G =

∏
i∈I

Gi such that the system {Gi}i∈I does not satisfy the condition of

finiteness.

Example 1.2. Let A =
∞∏
i=0

Ai, where A0 is the group of integer p -

adic numbers, and Ai (i = 1, ∞) are cyclic groups of order pi (here p is a
fixed prime number). Since each group Ai (i = 0, ∞) is algebraically com-
pact, A is an algebraically compact group [46], and, as follows from Corol-
lary 3.10, it is fully transitive. Consider the elements ai ∈ Ai (i = 0, ∞)
such that hp(ai) = 0, then H(a0) = inf�{H(ai)}i=1,∞ . At the same time,
there exist no finite subset of elements {aik}k=1, n ⊂ {ai}i=1,∞ such that
H(a0) = inf�{H(aik)}k=1, n .

§2. Fully transitivity of torsion free groups

In this section we demonstrate that the condition of monotonicity for a
system of pure rank 1 subgroups of an arbitrary torsion free group is equiva-
lent to homogeneity. Then we characterize fully transitive separable torsion
free groups and consider some problems connected with fully transitivity of
direct product of generally separable, separable, and homogeneously decom-
posable torsion free groups.

Lemma 2.1. A system of homogeneous torsion free groups {Ai}i∈I sat-
isfies the condition of monotonicity if and only if π(Aα)

⋂
π(Aβ) = ∅ for all

groups Aα, Aβ ∈ {Ai}i∈I such that t(Aα) �= t(Aβ).

Proof. Let the system of homogeneous torsion free groups {Ai}i∈I sat-
isfy the condition of monotonicity and there exists groups Aα, Aβ ∈ {Ai}i∈I

such that t(Aα) �= t(Aβ) and π(Aα)
⋂
π(Aβ) �= ∅. Let, for definiteness,

t(Aα) � t(Aβ) and p is a prime number such that p ∈ π(Aα)
⋂
π(Aβ).

Then, from the groups Aα and Aβ , we respectively choose elements aα

and aβ such that hp(aβ) ≤ hp(aα). Then χ(aα) ≥ inf{χ(paα), χ(aβ)},
and χ(aα) < χ(paα). Since hp(aα) + 1 = hp(paα) and χ(aα) � χ(aβ).
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Since the system {Ai}i∈I satisfies the condition of monotonicity, there ex-
ist elements aα1 , aα2 , . . . , aαn ∈ Aα such that aα = aα1 + . . . + aαn , where
χ(aαk

) ≥ χ(aβ) for any k = 1, n or χ(aαk
) ≥ χ(paα). Since t(Aα) � t(Aβ),

χ(aαk
) � χ(aβ) for any k = 1, n. So χ(aαk

) ≥ χ(paα) for each k = 1, n. Then
χ(aα) ≥ inf{χ(aαk

)}k=1, n ≥ χ(paα), what is impossible.
Conversely. Consider an arbitrary group Aj ∈ {Ai}i∈I and an arbi-

trary element 0 �= aj ∈ Aj such that χ(aj) ≥ inf{χ(ai1), . . . , χ(ais)}, where
aik ∈ Aik , ik ∈ I, k = 1, s, ik �= il for k �= l, and χ(aj) � χ(aik) for any
k = 1, s. Since the system {Ai}i∈I consists of reduced groups, there exists
a prime number p such that p ∈ π(Aj). Since hp(aj) ≥ inf{hp(aik)}k=1, s ,
there exists an element aiβ ∈ {aik}k=1, s such that hp(aj) ≥ hp(aiβ). Then, as
follows from the condition, t(Aj) = t(Aiβ). Since hq(aj) = hq(aiβ), is valid for
almost all prime numbers q, let q1, . . . , qn be prime numbers (different from
p) for which hqα(aj) �= hqα(aiβ). Then, for each prime number qα (α = 1, n),

there exists an element a
(α)
i ∈ {aik}k=1, s such that hqα(a

(α)
i ) ≤ hqα(aj). By

construction of the system {aiβ , a
(α)
i }α=1, n, it follows that t(aj) = t(c) for

any element c of this system, and χ(aj) ≥ inf{χ(aiβ), χ(a
(α)
i )}α=1, n . Since

the system {Aj , Aiβ , A
(α)
i }α=1, n consists of groups of the same type, it satis-

fies the condition of monotonicity [29, Lemma 2.2]. So there exist elements
aj1, . . . , ajr ∈ Aj such that aj = aj1 + . . . + ajr , and for each ajl

(l = 1, r)

there exists an element d ∈ {aiβ , a
(α)
i }α=1, n such that χ(ajl

) ≥ χ(d). Then

{aiβ , a
(α)
i }α=1, n ⊆ {aik}k=1, s .

Lemma 2.2. If the groups Gi (i ∈ I) are homogeneous torsion free direct
summands of an arbitrary fully transitive group G, the system {Gi}i∈I satis-
fies the condition of monotonicity.

Proof. Let the condition of the lemma be satisfied. Then, by Lemma
2.1, we have to show that π(A)

⋂
π(B) = ∅ for all groups A, B ∈ {Gi}i∈I

such that t(A) �= t(B). Let, for definiteness, t(A) � t(B). If the groups
A and B lay in the same decomposition of G, the statement of the Lemma
follows from Theorem 1.3 and Lemma 2.1. Let the groups A and B lay in
different decompositions of the group G, i.e., A⊕A1 = G = B⊕B1. Consider
an arbitrary group C ∈ {A,B} and an arbitrary element 0 �= c ∈ C such
that H(c) ≥ inf�{H(a), H(b)}, where a ∈ A, b ∈ B. Here H(c) � H(a) and
H(c) � H(b). Let’s show that b ∈ A1. Indeed, since t(A) � t(B) and b �= 0,
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b �∈ A. Let b = a′+a′1, where a′ ∈ A, a′1 ∈ A1 (we consider the decomposition
G = A ⊕ A1), then H(b) = inf�{H(a′), H(a′1)} ≤ H(a′). This contradicts
to t(A) � t(B). Therefore, b ∈ A1, then H(a + b) ≤ H(c). Existence of
ϕ ∈ E (G) such that c = ϕ(a+b) = ϕ(a)+ϕ(b) follows from fully transitivity
of the group G. Since H(ϕ(a)) ≥ H(a) and H(ϕ(b)) ≥ H(b), the system
{A,B} satisfies the condition of monotonicity and, by Lemma 2.1, it follows
that π(A)

⋂
π(B) = ∅.

The following Lemma says that the condition of monotonicity for a sys-
tem of pure rank 1 subgroups of a torsion free group G significantly influences
upon its structure.

Lemma 2.3. A reduced torsion free group G is homogeneous if and only
if the system {Ai}i∈I of all its pure rank 1 subgroups satisfies the condition
of monotonicity.

Proof. Necessity follows from Lemma 2.1. Let’s prove sufficiency. Sup-
pose the contrary, i.e., let G be a non-homogeneous group. Then there exist
non-zero elements a, b ∈ G such that t(a) �= t(b). As follows from Lemma
2.1, π(< a >∗) ∩ π(< b >∗) = ∅. Therefore, t(a + b) = t(a) ∩ t(b), what
implies

t(a+ b) < t(a) π(< a+ b >∗) ∩ π(< a >∗) = π(< a >∗) �= ∅.

Then, by Lemma 2.1, the system {< a+ b >∗ , < a >∗} does not satisfy the
condition of monotonicity what contradicts to our supposition and to the
note before Theorem 1.3.

The following Theorem characterizes fully transitive separable torsion free
groups.

Theorem 2.4. For a separable torsion free group G, the following are
equivalent:
1) G is a homogeneously decomposable group, and π(Gi)

⋂
π(Gj) = ∅ for all

homogeneous direct summands Gi, Gj from G such that t(Gi) �= t(Gj);
2) π(A)

⋂
π(B) = ∅ for all non-isomorphic rank 1 direct summands A and

B of G;
3) the system {Ai}i∈I of all rank 1 direct summands of the group G satisfies
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the condition of monotonicity;
4) the group G is fully transitive.

Proof. The implication 1) ⇒ 4) follows from [29, Corollary 2.13]; using
Lemma 2.2, we obtain 3) from 4); equivalence of 2) and 3) is established in
Lemma 2.1. Let’s show that 1) follows from 2). Let τ(G) denote the set of
different types of all rank 1 direct summands in G. Then, for each τ ∈ τ(G),
consider the subgroups G(τ) purely generated by all rank 1 direct summands
of type τ . Let’s show that G(τ) is a homogeneous group of type τ , i.e., that
an arbitrary element g ∈ G(τ) is of type τ in G(τ). Since the element g is a
solution of the equation nx = aj1 + . . .+ajk

in G, where ajl
∈ Ajl

, t(Ajl
) = τ

and Ajl
∈ {Ai}i∈I for any l = 1, k (here {Ai}i∈I is the system of all rank 1

direct summands of the group G), we can prove that

t(aj1 + . . .+ ajk
) = t(aj1) ∩ . . . ∩ t(ajk

). (∗)
by induction on k.

Let k = 2. Then the group G can be represented as G = Aj1 ⊕ H .
If aj2 ∈ H , t(aj1 + aj2) = t(aj1) ∩ t(aj2). If aj2 ∈ Aj1 , aj1 + aj2 ∈ Aj1

and t(aj1 + aj2) = t(aj1) ∩ t(aj2). If aj2 = a′j1 + h, where a′j1 ∈ Aj1 , h ∈ H ,
aj1 +aj2 = aj1 +a′j1 +h and t(aj1 +aj2) = t(aj1 +a′j1 +h) = t(aj1 +a′j1)∩t(h) =
t(aj1)∩ t(a′j1)∩ t(h). Since t(aj2) = t(a′j1)∩ t(h), t(aj1)∩ t(aj2) = t(aj1 + aj2).
Let the equality (∗) be valid for k = m − 1 (m ≥ 3). Let’s demonstrate
its validity for k = m. Using the induction hypotheses, we obtain that
t(aj1 + . . .+ajk

) = t(aj1 + . . .+ajk−1
)∩ t(ajk

) = t(aj1)∩ . . .∩ t(ajk−1
)∩ t(ajk

).
Note also that for all τ1, τ2 ∈ τ(G) it follows that t(G(τ1)) �= t(G(τ2)), and since
t(G(τ1)) = t(A(τ1)), t(G(τ2)) = t(A(τ2)) for some A(τ1), A(τ2) ∈ {Ai}i∈I , and the
system {Ai}i∈I satisfies the condition 2), we have π(G(τ1)) ∩ π(G(τ2)) = ∅.
Let’s show that G = ⊕

τ∈τ(G)
G(τ). Let G(α), G(τ1), . . . , G(τk) ∈ {G(τ)}τ∈τ(G),

where G(τi) �= G(τj), i �= j for all i, j = 1, k and G(α) �= G(τi) for any i = 1, k .
Let’s assume that there exists 0 �= b ∈ G(α) ∩ (G(τ1) + . . . + G(τk)). Since G
is a reduced group, there exists a prime number p such that hp(b) �= ∞ in
the group G(α), and, consequently, in the group G. On the other hand, since
π(G(1)) ∩ π(G(2)) = ∅ for all G(1), G(2) ∈ {G(τ)}τ∈τ(G), G

(1) �= G(2), we have
t(G(τ1) + . . .+G(τk)) = t(G(τ1))∩ . . .∩ t(G(τk)). And since π(G(α))∩π(Gi) = ∅
for any i = 1, k, we have π(G(α)) ∩ π(G(τ1) + . . . + G(τk)) = ∅. Therefore,
hp(b) = ∞ in the group G(τ1) + . . . + G(τk), and in the group G, what con-
tradicts uniqueness of height of an element in a group. Let’s show that the
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group G is generated by the set {G(τ)}τ∈τ(G). Indeed, let’s assume that there
exists an element g ∈ G such that g �∈ ⊕

τ∈τ(G)
G(τ). Since the group G is

separable, we obtain that the element g can be embedded into a complete-
ly decomposable direct summand F = F1 + . . . + Ft of the group G. For
each l = 1, t there exists τl ∈ τ(G) such that Fl ⊆ G(τl). So the element

g ∈ t⊕
l=1
G(τl), what contradicts our assumption.

Definition 2.1. We say that a system of torsion free groups {Gi}i∈I

is endotransitive if a ∈ Gi, b ∈ Gj and χ(a) = χ(b), imply existence of
ϕ ∈ Hom(Gi, Gj) with the property ϕ(a) = b.

If the system {Gi}i∈I consists of a single group, we come to the concept
of endotransitivity of a group introduced in [35].

The following simple proposition shows that the concepts of fully transi-
tivity and endotransitivity coincide for a system consisting of homogeneous
groups of the same type.

Lemma 2.5. An arbitrary system of homogeneous groups {Gi}i∈I of the
same type is fully transitive if and only if it is endotransitive.

Proof. Necessity is evident. Let’s prove sufficiency. Consider arbitrary
groups Gj , Gt ∈ {Gi}i∈I and arbitrary elements a ∈ Gj , b ∈ Gt such that
χ(a) ≤ χ(b). If χ(a) = χ(b), there exists a homomorphism ψ ∈ Hom(Gj , Gt)
such that ψ(a) = b. Now let χ(a) < χ(b). Since the characteristics χ(a) and
χ(b) are equivalent, there exists a natural number n such that χ(na) = χ(b).
So there is a homomorphism ϕ ∈ Hom(Gj , Gt) such that ϕ(na) = b. There-
fore, the homomorphism ψ = nϕ maps a into the element b.

We recall that a torsion free group G is said to be generally separable [29]
if each finite subset of elements from G is contained in a certain homoge-
neously decomposable direct summand of the group G.

Theorem 2.6. A group A =
∏
i∈I

Ai where Ai (i ∈ I) are generally sepa-

rable groups is fully transitive if and only if for all homogeneous direct sum-
mands B and C from A the following conditions
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1) the system {B, C} is endotransitive;
2) if t(B) �= t(C), then π(B) ∩ π(C) = ∅
are fulfilled.

Proof. Necessity. The condition 2) follows from Lemmas 2.1 and 2.2.
Let’s demonstrate validity of the condition 1). As follows from Theorem 1.3
and Lemma 2.5, the system of groups {B, C} satisfying the condition of
the Theorem is endotransitive if these groups lay in the same decomposition
of the group A and if t(B) �= t(C), because in this case Hom(B, C) =
Hom(C, B) = 0. Let t(B) = t(C) and the groups B, C lay in different
decompositions of the group A. Consider arbitrary elements b ∈ B, c ∈ C
such that χ(b) = χ(c), then χ(ρ1(b)) = χ(ρ2(c)), where ρ1 : B −→ A, ρ2 :
C −→ A are embeddings. Fully transitivity of the group A implies existence
of ϕ ∈ E (A) such that ϕ(ρ1(b)) = ρ2(c). Then there exists ψ ∈ Hom(B, C)
such that ψ(b) = c, where ψ = πϕρ1 and π : A −→ C is a projection.

Sufficiency. Let a, b ∈ A, χ(a) ≤ χ(b) and a = (. . . , ai, . . . ), b =
(. . . , bi, . . . ), where ai, bi ∈ Ai for any i ∈ I. Since Ai is a generally separable
group, one can embed bi in a homogeneously decomposable direct summand.
Let Hi be one of minimal (with respect to inclusion) summands of such kind.
We have bi = bi1 + . . .+ bim , where Hi = Hi1 + . . .+Him is decomposition of
Hi into a direct summand of homogeneous groups (where m depends on the
index i and on the choice of Hi). We say that such a decomposition of the
element bi is homogeneous. Since (n = 1, m) χ(bin) ≥ χ(a) for each sum-
mand bin , it is sufficient to show that there exists ψin ∈ Hom(A, Hin) such

that ψin(a) = bin . Then
m∑

n=1

ψin(a) = bi, where
m∑

n=1

ψin ∈ Hom(A, Ai). Then,

as follows from [46, Theorem 8.2], there exists ψ ∈ E (A) such that ψ(a) = b.
Since the condition 2) of this Theorem is satified and χ(bin) ≥ χ(a), one
can find a system of elements {ail}l=1, d such that ai = ai1 + . . . + aid and

t(ail) = t(bin) for any l = 1, d, where χ(bin) ≥ inf{χ(ail)}l=1, d . The homo-
geneous system {Hil, Hin} is fully transitive by virtue of condition 1) and
Lemma 2.5. So, if there exists l = 1, d such that χ(ail) ≤ χ(bin), existence
of ϕil ∈ Hom(Hil, Hin) such that ϕil(ail) = bin follows from fully transitivity
of this system. Then there exists ψin ∈ Hom(A, Hin) mapping the element a
into the element bin , where ψin = ϕilπilπ and π : A −→ Ai, πil : Ai −→ Hil

are projections. If there are no such an element ail (l = 1, d), the system
{Hil, Hin}l=1, d , consisting of homogeneous groups of the same type, satisfies
the condition of monotonicity (this follows from Lemma 2.1 and condition
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2) of the Theorem). Then there exist elements b
(1)
in
, . . . , b

(γ)
in

∈ Hin such

that bin = b
(1)
in , . . . , b

(γ)
in , and for each b

(t)
in (t = 1, γ), there exists an element

a
(t)
il

∈ {ail}l=1, d, for which χ(b
(t)
in ) ≥ χ(a

(t)
il

). Since the system {H(t)
il
, Hin} is

fully transitive for each t = 1, γ, there exist ϕit ∈ Hom(H
(t)
il
, Hin) (t = 1, γ),

mapping the elements a
(t)
il

into the elements b
(t)
in respectively (here H

(t)
il

∈
{Hil}l=1, d for each t = 1, γ). Then

γ∑
t=1

ϕit(a
(t)
il

) = bin . Therefore, there exists a

homomorphism ψit =
γ∑

t=1

ϕitπitπi such that ψita = bin , where πit : Ai −→ Hit

πi : A −→ Ai are projections.

Corollary 2.7. A group A =
∏
i∈I

Ai, where Ai (i ∈ I) are separable

groups, is fully transitive if and only if π(B)
⋂
π(C) = ∅ follows for all non-

isomorphic rank 1 direct summands B and C of the group A.

Corollary 2.8.[35] A vector group A is fully transitive if and only if
π(B)

⋂
π(C) = ∅ follows for all non-isomorphic rank 1 direct summands B

and C of the group A.

Corollary 2.9.[29] A completely decomposable group A is fully transitive
if and only if π(B)

⋂
π(C) = ∅ follows for all non-isomorphic rank 1 direct

summands B and C of the group A.

§3. Fully transitivity of direct products and direct sums of
s-generally slender groups

In this section we prove a criterion for fully transitivity of direct prod-
ucts of s-generally slender groups (Theorem 3.1). By use of this, we obtain
some equivalent conditions for fully transitivity of direct products of gener-
ally slender groups, separable groups, countable groups, slender torsion free
groups, torsion groups (Corollaries 3.2 – 3.4). Besides, we demonstrate that
any algebraically compact group is fully transitive.

As it was mentioned in §1, the conditions of fully transitivity, monotonic-
ity, and finiteness of an arbitrary system of groups {Gi}i∈I are only sufficient
for fully transitivity of the group

∏
i∈I

Gi. In this section we introduce a class
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of groups for which these conditions are also necessary for fully transitivity
of their direct product if we impose them on an arbitrary system of groups
from this class.

The following concept was introduced by S. V. Rychkov in [45].

Definition 3.1. [45] An abelian group A is said to be generally slender if
it does not contain non-bounded coperiodic subgroups and subgroups isomor-
phic to the group

∏
ℵ0

Z.

Slender, countable reduced, and torsion reduced groups are examples of
generally slender groups [45].

Definition 3.2. We say that a group G is s-generally slender if each
element g ∈ G such that o(g) = ∞ can be embedded into a generally slender
direct summand of the group G.

The class of s-generally slender groups is wider than the class of generally
slender groups. In particular, it contains all separable reduced abelian groups
including

∏
ℵ0

Z. Indeed, let A be a separable reduced group. We can show

that it is s-generally slender. Let a ∈ A, o(g) = ∞. Then, since the group A
is separable, the element a can be embedded into a completely decomposable

direct summand B of the group A, where B =
n⊕

i=1
Bi, Bi (i = 1, n) are rank

1 groups. Every Bi is a generally slender group. So, as it follws from [45,
Proposition 3], B is a generally slender group.

Now we consider one of the main results of this section.

Theorem 3.1. A group G =
∏
i∈I

Gi, where Gi (i ∈ I) are s-generally

slender groups, is fully transitive if and only if the following conditions are
satisfied:
1) {Gi}i∈I is a fully transitive system of groups;
2) the system of groups {Gi}i∈I satisfies the condition of monotonicity;
3) the system of groups {Gi}i∈I satisfies the condition of finiteness.

Proof. Sufficiency follows from Proposition 1.5. Necessity. Fulfilment
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of the conditions 1) – 2) follows from Proposition 1.4. Let’s demonstrate
validity of the condition 3). Consider an arbitrary group Gj ∈ {Gi}i∈I and an
arbitrary element gj ∈ Gj such that o(gj) = ∞ and H(gj) ≥ inf�{H(gτ )}τ∈J ,
J ⊆ I, and |J | = ℵ0. Then G =

∏
τ∈J

Gτ ⊕ ∏
i∈I\J

Gi. Let G(1) =
∏
τ∈J

Gτ and

G(2) =
∏

i∈I\J
Gi. Since G is a fully transitive group, the system {G(1), G(2)} is

fully transitive. Two cases are possible: j ∈ I \ J or j ∈ J . Let j ∈ I \ J
and g(1) = (. . . , gτ , . . . ) ∈ G(1), g(2) = (0, . . . , 0, gj, 0, . . . ) ∈ G(2). Since
H(g(2)) ≥ H(g(1)), there exists ϕ ∈ Hom(G(1), G(2)) such that ϕ(g(1)) =
g(2). Then one can find a homomorphism ψ ∈ Hom(G(1), Bj) such that
ψ(g(1)) = gj, where Bj is a generally slender direct summand of the group
Gj, ψ = ππjϕ; πj : G(2) −→ Gj , π : Gj −→ Bj are projections. Since Bj

is a generally slender group, there exists, as follows from [45, Proposition

1], a natural number k such that ψ(
∞∏

τ=k

Gτ ) is a bounded group. The group

G(1) can be represented in the form G(1) = G1 ⊕ . . .⊕ Gk−1 ⊕
∞∏

τ=k

Gτ , then

the element g(1) can be written as g(1) = g1 + . . . + gk−1 + g, where gt ∈ Gt

(t = 1, k − 1), Gt ∈ {Gτ}τ=1,∞ and g ∈
∞∏

τ=k

Gτ . Then the element gj =

ψ(g(1)) = ψ(g1 + . . . + gk−1) + ψ(g) = gj1 + gj2, gj1 = ψ(g1 + . . . + gk−1)

and gj2 = ψ(g). Since gj2 ∈ ψ(
∞∏

τ=k

Gτ ), o(gj2) <∞. From H(gj2) ≥ H(g) and

o(gj2) < ∞ follows existence of a finite coordinate system {gτl
}τl=k,∞; l=1, m

for the element g such that inf�{H(gτl
)}τl=k,∞; l=1, m ≤ H(gj2). Then

H(gj) ≥ inf
�

{H(gj1), H(gj2)}
≥ inf{inf

�

{H(gt)}t=1, k−1, inf
�

{H(gτl
)}τl=k,∞; l=1, m}

= inf
�

{H(gj1), . . . , H(gk−1), H(gτ1), . . . , H(gτm)}.

The case j ∈ J can be proved similarly.

The following corollaries can be obtained immediately from this Theorem.

Corollary 3.2. A group G =
∏
i∈I

Gi, where Gi (i ∈ I) are generally

slender groups, is fully transitive if and only if the conditions 1) – 3) of the
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previous Theorem are satisfied for the system {Gi}i∈I .

Corollary 3.3. If each group Gi (i ∈ I) satisfies at least one of the
following conditions:
1) Gi is a separable group;
2) Gi is a countable group;
3) Gi is a slender group;
4) Gi is a torsion group,
the group G =

∏
i∈I

Gi is fully transitive if and only if the conditions 1) – 3) of

Theorem 3.1 are satisfied.

Corollary 3.4. A group G =
∏
i∈I

Gi, where Gi (i ∈ I) are torsion groups,

is fully transitive if and only if the conditions 1), 2) of Theorem 3.1 are sat-
isfied.

Further, we show that the criterion for fully transitivity of the direct
product of torsion groups can be simplified. First, we prove the following
working lemma.

Lemma 3.5. A system of torsion groups {Gi}i∈I satisfies the condition
of monotonicity for height matrices if and only if for each prime number p
the system {Gip}i∈I (where Gip are p -primary components of the group Gi)
satisfies the condition of monotonicity.

Proof. Necessity directly follows from the definition of monotonicity of
a system. Let’s prove sufficiency. Consider an arbitrary group Gj ∈ {Gi}i∈I

and an arbitrary element gj ∈ Gj such that H(gj) ≥ inf�{H(gik)}ik∈I, k=1, n.

Here gil �= git if il �= it. Let H(gj) � H(gik) for any k = 1, n. Let’s represent
the elements gj and {gik}k=1, n as a sum of elements whose orders are powers
of different prime numbers:

gj = gj1 + . . .+ gjr gik = g
(1)
ik

+ . . .+ g
(m)
ik

(k = 1, n).

Then

H(gjα) ≥ H(gj) ≥ inf �{H(gik)}ik∈I, k=1, n = inf �{H(g
(β)
ik

)}ik∈I, k=1, n, β=1, m

for each α = 1, r. Consider the elements gjα (α = 1, r) such that H(gjα) �

H(g
(β)
ik

) for all β = 1, m and k = 1, n (if there are no such elements, the
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condition of monotonicity is satisfied trivially). Then, for each element gjα,
one can find elements

{a(α)
τ }τ=1, t ⊆ {g(β)

ik
}ik∈I, k=1, n, β=1, m

whose orders are powers of the prime numbers equal to order of the ele-
ment gjα. Here H(gjα) ≥ inf�{H(a

(α)
τ )}τ=1, t. Since the system {Gip}i∈I

satisfies the condition of monotonicity for each prime number p, there exist
elements b

(α)
j1
, . . . , b

(α)
jγ

such that b
(α)
j1

+ . . .+ b
(α)
jγ

= gjα, and for each element

b
(α)
jδ

(δ = 1, γ) there exists a
(α)
τ (τ = 1, t) such that H(b

(α)
jδ

) ≥ H(a
(α)
τ ). Then

H(b
(α)
jδ

) ≥ H(gik) for a certain k = 1, n, because a
(α)
τ is one of the summands

in the decomposition of the element gik . Further, replacing the elements gjα

by their decomposition b
(α)
j1

+ . . . + b
(α)
jγ

, we obtain a new decomposition for
the element gj, and for each element cjσ from this decomposition one can
find an element gik (k = 1, n) such that H(cjσ) ≥ H(gik).

The following proposition is of some interest.

Proposition 3.6. Any system of fully transitive torsion groups satisfies
the condition of monotonicity.

Proof follows from Lemma 3.5, [10, Proposition 1] and Theorem 1.3.

The following corollary follows from the Proposition 3.6, Corollary 3.4,
and Theorem 1.3.

Corollary 3.7. For torsion groups
Gi (i ∈ I), the following conditions are equivalent:
1)

∏
i∈I

Gi is a fully transitive group;

2) ⊕
i∈I
Gi is a fully transitive group;

3) {Gi}i∈I is a fully transitive system of groups.

The following result shows that if a torsion group G has a separable direct
summand A, the question about fully transitivity of the whole group can be
reduced to the question about fully transitivity of the additional to A direct
summand.
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Proposition 3.8. A torsion group G = A ⊕ B where A is a separable
group is fully transitive if and only if the group B is fully transitive.

Proof. Applying Theorem 1.3, we obtain necessity. Let’s prove suffi-
ciency. By virtue of Corollary 3.7, it remains to show that that the system
{A, B} is fully transitive or that for any prime number p the system {Ap, Bp}
(where Ap, Bp are p -components of the groups A and B respectively) is fully
transitive. The groups Ap, Bp are fully transitive as direct summands of fully
transitive groups. So, let’s show that for all elements a ∈ Ap and b ∈ Bp

such that Hp(a) ≤ Hp(b) (Hp(b) ≤ Hp(a)) there exists ϕ ∈ Hom(A, B)
(ψ ∈ Hom(B, A)) such that ϕ(a) = b (ψ(b) = a). Suppose that the sub-
group < b > does not contain elements of infinite p -height in Bp. Then
the element b can be embedded in a finite direct summand B′

p of the group
Bp [46, Corollary 27.9]. Since B′

p is a separable group, Ap ⊕ B′
p is separable

and, consequently, fully transitive. Then, as follows from Corollary 3.7, there
exists ϕ ∈ Hom(Ap, B

′
p), mapping the element a into b, if Hp(a) ≤ Hp(b).

On the other hand, there exists ψ′ ∈ Hom(B′
p, Ap) such that ψ′(b) = a if

Hp(b) ≤ Hp(a). But then there exists ψ ∈ Hom(Bp, Ap) such that ψ(b) = a,
where ψ = ψ′π and π : Bp −→ B′

p is a projection. Let the subgroup < b >
contain elements of infinite height. Then Hp(a) < Hp(b) is a unique possible
comparison (the heights of elements are taken in Ap and Bp respectively). Let
δn be the least infinite ordinal in Hp(b) = (δ0, . . . , δk,∞, . . . ). Let o(a) = pt

and hp(p
t−1a) = s. If n = 0, the group Bp contains cyclic summands of

arbitrarily high order because it is non-bounded. Let Fp be such a summand
of order not less than pt+s, i.e., let |Fp| = pt+s+r, where r ≥ 0 and f is the
generator of the group Fp. Then Hp(a) ≤ Hp(p

s+rf) and, as follows from
the previous case, there exists ϕ ∈ Hom(Ap, Bp), mapping the element a
into ps+rf . Since Bp is a fully transitive group and o(ps+rf) ≥ o(b), one can
find ψ ∈ E (Bp) such that ψ(ps+rf) = b. Then ψϕ ∈ Hom(Ap, Bp) maps the
element a into the element b. Let n �= 0, then δith Ulm-Kaplansky invariants
are different from zero for all the ordinals δi (0 ≤ i < n) followed by jumps
[47, Lemma 65.3]. Therefore, the increasing surface (δ0, . . . , δn−1,∞, . . . ) is
the characteristic function of a certain element b′p ∈ Bp. Since the group
< b′p > does not contain elements of infinite height, the element b′p can be
embedded in a finite direct summand B′

p of the group Bp. Let Bp = B′
p⊕B′′

p .
Since B′′

p is a non-bounded group, it contains cyclic direct summands of ar-
bitrarily high. So, B′′

p contains a cyclic direct summand Cp of order not
less than pt+s, i.e., |Cp| = pt+s+r (r ≥ 0) and c ∈ Cp is its generator.
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Then Hp(a) < Hp(b
′ + ps+rc) < Hp(b). By virtue of Corollary 3.7, since

Ap ⊕ B′
p ⊕ Cp is a separable direct summand of the group G, there exists

ϕ ∈ Hom(Ap, B
′
p ⊕ Cp) such that ϕ(a) = b′ + ps+rc. At the same time,

fully transitivity of the group Bp implies existence of ψ ∈ E (Bp) such that
(ψϕ)(a) = b, where ψϕ ∈ Hom(Ap, Bp).

Some examples of fully transitive (not obligatorily torsion) groups are
presented by the following Corollary, where a separable (totally projective)
torsion group means a torsion group for which each p -component is a sepa-
rable (totally projective) group.

Corollary 3.9. If each of the reduced torsion groups Gi (i ∈ I) satisfies
at least one of the following conditions:
1) Gi is a separable group;
2) Gi is a totally projective group,
then

∏
i∈I

Gi and ⊕
i∈I
Gi are fully transitive groups.

Proof. By Lemma 3.5, one can consider that each group Gi (i ∈ I) is
a p -group. Let’s show that ⊕

i∈I
Gi is a fully transitive group. Let I1 = {i ∈

I |Gi is a separable group}, then ⊕
i∈I
Gi = ⊕

i∈I1
Gi ⊕ ⊕

i∈I\I1
Gi. Note that ⊕

i∈I1
Gi

is a separable group ( ⊕
i∈I\I1

Gi is a totally projective group) as a direct sum of

separable (totally projective groups) [47, p.122, Theorem 83.5]. Since each
totally projective p -group is fully transitive [14], ⊕

i∈I\I1
Gi is a fully transitive

group. Using Proposition 3.8, we obtain that the group ⊕
i∈I
Gi is fully tran-

sitive. Corollary 3.7 makes it possible to say that
∏
i∈I

Gi is a fully transitive

group.

Corollary 3.10. An algebraically compact group is fully transitive.

Proof follows from Theorem 1.3, Corollary 3.8, and [46, Corollary 38.2].
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§4. Fully transitivity of direct products of abelian groups whose
systems of factors satisfy the condition of finiteness

In this section we obtain simpler criteria for fully transitivity of split
mixed groups, fully transitivity of direct products of separable groups. Influ-
ence of fully transitivity on split direct products of s-generally slender groups
and separability of a direct product of groups is studied.

Let’s prove the following simple statement.

Lemma 4.1. If a group G contains an element a of order pn, n ∈ N and
generalized p -height greater or equal m (where m is a non-negative integer),
it has a cyclic direct summand of order not less than pn+m.

Proof. Let the group G contain an element a satisfying the condition of
the Lemma. Let Tp(G) be the p -component of the torsion subgroup of the
group G. As follows from [46, p.142], if Tp(G) is a non-bounded group, it
contains a cyclic direct summand of arbitrarily high order. This summand,
being a bounded pure subgroup of the group G, is a direct summand in it.
If Tp(G) is a bonded group, let h∗p(a) = k ≥ m. Then, as follows from [41],
the element pn−1a can be embedded into a cyclic direct summand B of order
pn+k ≥ pn+m.

Lemma 4.2. Let A be a torsion free group and
∏
i∈I

Gi be a fully transitive

group, where Gi (i ∈ I) are torsion groups. Then for all elements a ∈ A and
g ∈ G such that H(a) ≤ H(g) there exixts ϕ ∈ Hom(A, G) mapping a into g.

Proof. Let a ∈ A and g ∈ G satisfy the condition of the lemma and
g = (. . . , gi, . . . ), where gi ∈ Gi. Since H(a) < H(gi) for any i ∈ I, it is suffi-
cient to show that for any coordinate gi, (i ∈ I) there exists ϕi ∈ Hom(A, Gi)
such that ϕi(a) = gi. Then, as follows from [46, Theorem 8.2], there exists
ϕ ∈ Hom(A, G) such that ϕ(a) = g. Let’s consider an arbitrary coordinate
gi ∈ Gi and denote it by b. Let the group Gi be denoted by B. Now we fix
a set of prime numbers p1, . . . , pk for which h∗pi

(b) �= ∞ and let hpi
(a) = ni

(i = 1, k). The element b can be represented in the form b = b1 + . . . + bk,
where Bi (i = 1, k) are pi-components of the group B and bi ∈ Bi. So, for
each element bi, o(bi) = pmi

i and h∗pi
(bi) ≥ ni, one can find a cyclic direct
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summand Ci such that |Ci| ≥ pmi+ni
i (Lemma 4.1). Let ci be one of the

generators of the group Ci (i = 1, k), then H(a) < H(pni
i ci) ≤ H(bi), and,

therefore, H(a) < H(pn1
1 c1 + . . . + pnk

k ck) ≤ H(b). The equations pni
i x = a

(i = 1, k) are solvable in the group < a >∗. Let xi (i = 1, k) be solutions
of these equations and, consequently, hpi

(xi) = 0. We can construct ho-
momorphisms ψi :< a >∗−→ Ci (i = 1, k) such that ψi(xi) = ci. Since
< a >∗ is a group of rank 1, there exist integers m and n such that mxi = nd
and (m, n) = 1 for any d ∈< a >∗. Taking into account that xi has zero
height with respect to a prime number pi in the group < a >∗, we ob-
tain (n, pi) = 1. Now we put ψi(d) = m

n
ci. It is easy to see that the

mapping ψi (i = 1, k) is a homomorphism. Besides, the homomorphism
ψ = ψ1 + . . . + ψk maps the element a into the element pn1

1 c1 + . . . + pnk
k ck.

Since C =
k⊕

i=1
Ci is an algebraically compact and, consequently, purely injec-

tive group, there exists a homomorphism α ∈ Hom(A, C) such that αi = ψ,
where i :< a >∗−→ A is an embedding and α(a) = pn1

1 c1 + . . .+ pnk
k ck. Since

H(pn1
1 c1 + . . .+ pnk

k ck) ≤ H(b) and B are fully transitive groups, one can find
η ∈ E (B) such that η(pn1

1 c1 + . . . + pnk
k ck) = b. Then the homomorphism

ηα ∈ Hom(A, B) maps the element a into the element b.

Proposition 4.3. Let the system {Gi}i∈I satisfy the condition of finite-
ness for height matrices. If for any prime number p there exists an element
gj ∈ Gj (j ∈ I) such that o(gj) = ∞ and h∗p(p

kgj) �= ∞ for any k ∈ N, then
Tp(

∏
i∈I

Gi) =
∏
i∈I

Tp(Gi).

Proof. It is easy to show that

Tp(
∏
i∈I

Gi) = Tp(
∏
i∈I

Tp(Gi)) (∗)

for any prime number p. Let the condition of the proposition be satisfied, i.e.,
there exists an element gj ∈ Gj (j ∈ I) such that o(gj) = ∞ and h∗p(p

kgj) �=
∞ for any k ∈ N and a prime number p. The equality (∗) implies Tp(

∏
i∈I

Gi) ⊆
∏
i∈I

Tp(Gi). It remains to show that
∏
i∈I

Tp(Gi) is a torsion group. Assume the

contrary, i.e., let there be an element a ∈ ∏
i∈I

Tp(Gi) of infinite order. Then

one can find coordinates aα element a such that

H(a) = inf �{H(aα)}α∈J ,J⊆I, |J |=ℵ0
.
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As follows from Lemma 4.1, a cyclic direct summand Bα ⊆ Tp(Gα), for
which |Bα| ≥ pk(α) can be found for any coordinate aα (α ∈ J) of the el-
ement a such that o(aα) = pk(α). Let bα be one of the generators of the
group Bα (α ∈ J), then inf{Hp(bα)}α∈J = (0, 1, 2, . . . ). We have H(gj) ≥
inf�{H(pgj), H(bα)}α∈J . So, since the system {Gi}i∈I satisfies the condition
of finiteness, there exists a finite subsystem {cτ}τ=1, n ⊂ {pgj, bα}α∈J such
that H(gj) ≥ inf�{H(cτ )}τ=1, n. If pgj �∈ {cτ}τ=1, n, the previous inequality
is impossible. Indeed, the group

∏
i∈I

Tp(Gi) contains an element b′ such that

all its non-zero coordinates are elements of cτ (τ = 1, n). Since the element
b′ is of finite order and

H(b′) = inf �{H(cτ )}τ=1, n , then H(gj) � inf �{H(cτ )}τ=1, n .

Let pgj ∈ {cτ}τ=1, n and pgj = cn. Since all the elements cτ (τ = 1, n− 1)
are of finite order, there exists m ∈ N such that pm = max{o(cτ )}τ=1, n−1 .
Then Hp(p

lgj) < inf{Hp(p
lcτ )}τ=1, n = Hp(p

l+1gj) for any l ≥ m. Therefore,
H(gj) � inf�{H(cτ )}τ=1, n .

Corollary 4.4. Let the system {Gi}i∈I satisfy the condition of finiteness
for height matrices. If a torsion free direct summand Aj of the group Gj

exists for a certain j ∈ I, then Tp(
∏
i∈I

Gi) =
∏
i∈I

Tp(Gi) for any p ∈ π(Aj).

Lemma 4.5. Let the system {Gα}α∈� satisfy the condition of finiteness,
A = I ∪ J , and let the following condition be satisfied:
1) Gα = Aα ⊕Bα, if α ∈ I ∩ J ;
2) Gα = Aα, if α ∈ A \ J ;
3) Gα = Bα, if α ∈ A \ I,
where 0 �= Aα is a torsion free group, 0 �= Bα = T (Gα) for any α ∈ A. If∏
j∈J

Bj is a fully transitive group, the system {∏
i∈I

Ai,
∏
j∈J

Bj} satisfies the con-

dition of monotonicity.

Proof. Let A =
∏
i∈I

Ai and B =
∏
j∈J

Bj . Let’s consider the first case.

Let a, c ∈ A, b ∈ B and H(a) ≥ inf�{H(c), H(b)}. Then, as follows from
Corollary 4.4, for each prime number p such that pA �= A there exists n ∈ N
such that pnb = 0. Therefore, Hp(p

na) ≥ inf{Hp(p
nc), Hp(p

nb)} = Hp(p
nc),

and so H(a) ≥ H(c). Let’s consider the second case. Let a ∈ A, b, c ∈ B and
H(b) ≥ inf�{H(a), H(c)}, where H(b) � H(a) and H(b) � H(c).
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Let 1) o(b) < ∞, o(c) < ∞ and b = bp1 + . . .+ bpn , where bpτ ∈ Bpτ and
Bpτ (τ = 1, k) are p -components of the torsion subgroup of the group B.
Consider all the elements bq ∈ Bq such that q ∈ {pτ}τ=1, k and H(bq) � H(a),
H(bq) � H(c). Since H(bq) ≥ inf�{H(a), H(c)} and H(bq) � H(a), H(bq) �
H(c), we have 1’) Hq(bq) ≷ Hq(a) and 2’) Hq(a) ≷ Hq(c). Let’s show that
1’) is satisfied. Indeed, since o(a) = ∞, o(bq) < ∞ and H(bq) � H(a),
we have Hq(bq) ≷ Hq(a). Let’s show that the condition 2’) is satisfied.
Since o(a) = ∞, o(c) < ∞, hq(a) �= ∞ and hq(c) �= ∞, only two cases are
possible: Hq(a) < Hq(c) or Hq(a) ≷ Hq(c). Assume Hq(a) < Hq(c), then
inf{Hq(a), Hq(c)} = Hq(a) ≤ Hq(bq), what contradicts 1’). Let

Hq(bq) = (δ
(q)
0 , . . . , δ

(q)
m(q), ∞, . . . ), (∗∗)

Hq(a) = (n
(q)
0 , n

(q)
1 , . . . ), Hq(c) = (σ

(q)
0 , . . . , σ

(q)
ν(q), ∞, . . . ) for all such q.

Since H(bq) ≥ inf�{H(a), H(c)} and Hq(bq) ≷ Hq(a); Hq(a) ≷ Hq(c), we

have hq(a) > h∗q(bq) ≥ h∗q(c) (it means that n
(q)
0 > δ

(q)
0 ≥ σ

(q)
0 ). Since

Hq(bq) ≷ Hq(a), there exists the least non-negative integer r(q) such that

n
(q)
r(q) > δ

(q)
r(q) ≥ σ

(q)
r(q). However, δ

(q)
r(q)+1 ≥ n

(q)
r(q)+1 and δ

(q)
r(q)+1 �= ∞ (if we assume

that δ
(q)
r(q)+1 = ∞, we have H(bq) ≥ H(c) what is impossible). We can show

that there is a jump between δ
(q)
r(q) and δ

(q)
r(q)+1. Indeed, since δ

(q)
r(q) < n

(q)
r(q), we

have δ
(q)
r(q)+1 < n

(q)
r(q)+1 = n

(q)
r(q)+1 ≤ δ

(q)
r(q)+1. If there is a jump between δ

(q)
γ and

δ
(q)
γ+1, each δ

(q)
γ th Ulm-Kaplansky invariant of the group Bq is different from

xero in the characteristic function. So the sequence (∗∗) is the characteristic
function of a certain element dq ∈ Bq [47, Lemma 65.3]. On the other hand,

the element qm(q)bq is of order q and its height is not less than n
(q)
m(q). By

Lemma 4.1, the group Bq has a cyclic direct summand Fq whose order is not

less than qn
(q)
m(q)

+1. Since n
(q)
m(q) = n

(q)
0 +m(q), we have qn

(q)
m(q)

+1 = qn
(q)
0 +m(q)+1.

Let fq be one of generators of the group Fq. Then the element qn
(q)
0 fq has

the characteristic function Hq(q
n

(q)
0 fq) = (n

(q)
0 , . . . , n

(q)
λ , ∞, . . . ), where λ ≥

m(q).

Thus, we obtain that Hq(dq) > Hq(c) and Hq(q
n

(q)
0 fq) > Hq(a). It fol-

lows that H(dq) > H(c) and H(qn
(q)
0 fq) > H(a). On the other hand, since

hq(q
αdq) < hq(q

α+n
(q)
0 fq) for any 0 ≤ α ≤ r(q) and hq(q

αdq) > hq(q
α+n

(q)
0 fq)

for all α > r(q), we have Hq(dq + qn
(q)
0 fq) = inf{Hq(dq), Hq(q

n
(q)
0 fq)}. Here,

as it can be seen from the construction of the element dq + qn
(q)
0 fq, H(dq +
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qn
(q)
0 fq) ≤ H(bq). Since Bq is a fully transitive group, there exists ϕq ∈ E (Bq)

such that ϕq(dq) + ϕq(q
n

(q)
0 fq) = bq. It follows that H(ϕq(dq)) > H(c),

H(ϕq(q
n

(q)
0 fq)) > H(a). Further, let’s take the equality b = bp1 + . . .+ bpk

and
replace all the elements bq with the property H(bq) � H(a) and H(bq) � H(c)
by their above-mentioned decompositions. We obtain that b = b′1 + . . .+ b′n,
where n ≥ k. Thus, for any β = 1, n there is an element v ∈ {a, c} such
that H(b′β) ≥ H(v).

2) Let o(b) < ∞, o(c) = ∞ and {cj}j∈J , {ai}i∈I be coordinates of the
elements c and a respectively. Since H(b) ≥ inf�{H(a), H(c)}, we obtain
H(b) ≥ inf�{H(ai), H(cj)}i∈I, j∈J . The relation o(b) < ∞, implies existence
of a finite number of elements {cjk

, ail}k=1, r, l=1, t ⊂ {cj}j∈J ∪ {ai}i∈I such
that

H(b) ≥ inf �{H(ail), H(cjk
)}k=1, r, l=1, t .

The set {cjk
, ail}k=1, r, l=1, t cannot consist only of the elements cjk

(k = 1, r)

or only of elements ail (l = 1, t). Indeed, if ail = 0 for any l = 1, t, we
obtain H(b) ≥ inf�{H(cjk

)}k=1, r ≥ inf�{H(cj)}j∈J = H(c) what is im-
possible because H(b) � H(c) by condition. Similarly, one can verify the
condition cjk

= 0 for any k = 1, r. Let ρjk
: Bjk

−→ B (k = 1, r) and
ρil : Ail −→ A (l = 1, t) be embeddings. Then H(b) ≥ inf�{H(ρj1(cj1) +
. . .+ρjk

(cjk
)), H(ρi1(ai1)+. . .+ρit(ait))}. The element ρj1(cj1)+. . .+ρjk

(cjk
)

is of finite order. So, as follows from the case 1), there exists a finite num-
ber of elements b1, . . . , bm ∈ B such that b = b1 + . . . + bm, and for
each element bβ (β = 1, m), at least one of the inequalities must be valid:
H(bβ) ≥ H(ρj1(cj1)+. . .+ρjk

(cjk
)) or H(bj) > H(ρi1(ai1)+. . .+ρit(ait)). Then

for each β = 1, m we obtain at least one of the inequalities H(bβ) ≥ H(c) or
H(bβ) > H(a).

3) Let o(b) = ∞, o(c) = ∞. Among the coordinates {bj}j∈J of the el-
ement b we choose only those for which H(bj) � H(c) (they exist because
otherwise H(b) ≥ H(c), what contradicts the supposition H(b) � H(c)). As
follows from 1) and 2), since o(bj) < ∞ for any j ∈ J , there exist elements

{b(j)k }k=1, r, b
(j)
k ∈ B such that ρj(bj) = b

(j)
1 + . . .+ b

(j)
r . Here ρj : Bj −→ B is

an embedding and for any k = 1, r at least one of the following inequalities
must be valid: H(b

(j)
k ) > H(c) or H(b

(j)
k ) > H(a). Let πj : B −→ Bj be

a projection, then bj = πj(b
(j)
1 ) + . . . + πj(b

(j)
r ) and H(πj(b

(j)
k )) > H(c) or

H(πj(b
(j)
k )) > H(a) for any k = 1, r. Then each element bj can be represent-

ed in the form bj = bj1 + bj2 , where bj1 equals the sum of elements πj(b
(j)
k )

27



such that H(πj(b
(j)
k )) > H(c), and bj2 equals the sum of elements πj(b

(j)
k ),

for which H(πj(b
(j)
k )) ≯ H(c). We obtain H(bj1) > H(c) and H(bj2) > H(a).

Then b = (. . . , bj1 +bj2, . . . ), and, for some bj �= 0, bj1 = 0 or bj2 = 0 can take
place. Therefore, the element b can be written in the form b = b1 + b2, where
b1 = (. . . , bj1, . . . ) and b2 = (. . . , bj2, . . . ). It follows that H(b1) ≥ H(c) and
H(b2) > H(a).

Theorem 4.6. Let the system {Gα}α∈� satisfy the condition of finite-
ness, A = I ∪ J , and the following conditions are satisfied:
1) Gα = Aα ⊕Bα, if α ∈ I ∩ J ;
2) Gα = Aα, if α ∈ A \ J ;
3) Gα = Bα, if α ∈ A \ I,
where 0 �= Aα is a torsion free group, 0 �= Bα = T (Gα) for any α ∈ A. The
group G =

∏
α∈�

Gα is fully transitive if and only if
∏
i∈I

Ai and
∏
j∈J

Bj are fully

transitive.

Proof. Let A =
∏
i∈I

Ai and B =
∏
j∈J

Bj . Then, as follows from Theorem

1.3, these groups are fully transitive. Conversely. Let’s show that the system
of the groups {A, B} is fully transitive. The system {Gα}α∈� satisfies the
condition of finiteness. So, as follows from Corollary 4.4, Tp(B) =

∏
j∈J

Bjp for

any prime number p ∈ π(A), where Bjp (j ∈ J) is the p -component of the
group Bj. Then Hp(b) � Hp(a) for each prime number p ∈ π(A). It follows
that H(b) � H(a), i.e., only the following inequality is possible: H(b) > H(a).
By Lemma 4.2, there exists ϕ ∈ Hom(A, B) such that ϕ(a) = b. The condi-
tion of monotonicity for the system {A, B} follows from Lemma 4.5.

The following result is obtained directly from this Theorem for the class
of split groups.

Corollary 4.7. Let the system {Gα}α∈� of split groups satisfy the con-
ditio of finiteness. The group G =

∏
α∈�

Gα is fully transitive if and only if the

groups
∏

α∈�
T (Gα) and

∏
α∈�

(Gα / T (Gα)) are fully transitive.

Corollary 4.8. A split group is fully transitive if and only if its torsion
subgroup and its torsion free subgroup are fully transitive.

28



Some classes of fully transitive split groups are obtained in the following
corollary.

Corollary 4.9. Let G = A ⊕ B where B = T (G) and let the groups A
and B satisfy at least one of the following conditions:
1) A is a separable group such that π(C)∩ π(K) = ∅ takes place for all non-
isomorphic rank 1 direct summands C and K of the group A;
2) A is an algebraically compact group;
3) B is a separable group;
4) B is a totally projective group;
5) B is a direct sum of a separable and a totally projective group. Then G is
a fully transitive group.

Proof. Fully transitivity of groups from 1), 2), and 5) follows from The-
orem 2.4, Corollary 3.9, and Corollary 3.8; fully transitivity of groups from
3) and 4) is obtained from [47].

We recall that a subgroup H of a group G is said to be absorbing in G
[25], if T (G/H) = 0.

Let B denote the class of all reduced groups in which each absorbing
subgroup is a direct summand.

Corollary 4.10. A group G ∈ B is fully transitive if and only if T (G)
is fully transitive.

Proof. As follows from [25] and [26], G = T (G)⊕F , where F is a direct
sum of a finite number of mutually isomorphic torsion free rank 1 groups; it
remains to apply Corollary 4.8 and Theorem 2.4.

The following corollaries demonstrate some examples of classes of fully
transitive groups.

Let C denote the class of all reduced groups in which each isotype (pure)
subgroup is a direct summand.

Corollary 4.11. The class C consists of fully transitive groups.
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Proof. As follows from [2, Theorem 2], an arbitrary group G ∈ C has
the form G = T (G) ⊕ F , where the p -component T (G) is bounded and
the group F is a direct sum of a finite number of mutually isomorphic rank
1 groups. Applying Corollary 4.9, we obtain fully transitivity of the group G.

We recall that a subgroup B is said to be balanced in a group A [27] if each
residue class a + B contains an element x such that HA(x) = HA/B(a + B)
and o(x) = o(a+B).

Let S denote the class of all reduced groups in which each pure subgroup
is balanced.

Corollary 4.12. The class S consists of fully transitive groups.

Proof. As follows from [27, Proposition 4.8], each group from the class
S has the form G = A ⊕ B, where B is a torsion group in which each p -
component is bounded and A is a homogeneous completely decomposable
torsion free finite rank group. Therefore, fully transitivity of the group G
follows from Corollary 4.9.

Theorem 4.13. Let {Gα}α∈� be a system of s-generally slender groups
and A = I ∪ J , and let the following conditions be satisfied:
1) Gα = Aα ⊕Bα if α ∈ I ∩ J ;
2) Gα = Aα if α ∈ A \ J ;
3) Gα = Bα if α ∈ A \ I,
where 0 �= Aα is a torsion free group, 0 �= Bα = T (Gα) for any α ∈ A.
The group

∏
α∈�

Gα is fully transitive if and only if the following conditions are

satisfied:
1)

∏
α∈I

Gα is a fully transitive group;

2) {Gα}α∈J is a fully transitive system;
3) if p ∈ π(

∏
α∈I

Gα), Tp(
∏
α∈J

Gα) =
∏
α∈J

Tp(Gα).

Proof. By assumption, we obtain that G =
∏

α∈�
Gα =

∏
α∈I

Gα ⊕ ∏
α∈J

Gα.

Fully transitivity of the group G implies fully transitivity of the groups
∏
α∈I

Gα
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and
∏
α∈J

Gα (Theorem 1.3). By Proposition 1.4, the system {Gα}α∈J is ful-

ly transitive. Since {Gα}α∈� is a system of s-generally slender groups and
G is a fully transitive group, the system {Gα}α∈� satisfies the condition of
finiteness by Theorem 3.1. By Corollary 4.4, the condition 3) is satisfied.
Conversely. By virtue of Corollary 3.7, the group

∏
α∈J

Gα is fully transitive.

Let’s show that the system {Gα}α∈� satisfies the condition of finiteness. Con-
sider an arbitrary torsion free group Ai ∈ {Gα}α∈� and an arbitrary element
ai ∈ Ai such that H(ai) ≥ inf�{H(gα)}α∈�′ , where A′ ⊆ A and |A′| = ℵ0.
Let’s take all prime numbers p for which hp(ai) �= ∞ in the group Ai. Then
Tp(

∏
α∈J

Gα) =
∏
α∈J

Tp(Gα) and for any such prime p there exists m(p) ∈ N

such that hp(p
m(p)ai) ≥ hp(p

m(p)g
(p)
α ) for a certain element g

(p)
α ∈ {gα}α∈�′ of

infinite order. Then Hp(ai) ≥ Hp(g
(p)
α ) for all such p and all such elements

g
(p)
α . It follows that H(ai) ≥ inf�{H(g

(p)
α )}α∈�′∩J . Since the system {Gα}α∈I

consists of s-generally slender and since
∏
α∈I

Gα is a fully transitive group, the

system {Gα}α∈I satisfies the condition of finiteness by Theorem 3.1. Then
its subsystem {Gα}α∈�′∩I also satisfies the condition of finiteness. Therefore,

among the elements {g(p)
α }α∈�′∩J one can find a finite subsystem of elements

{g(p)
αr }r=1, n , such that H(ai) ≥ inf�{H(g

(p)
αr )}r=1, n. Thus we see that the sys-

tem {Gα}α∈� satisfies the conditio of finiteness. It means that the group G
is fully transitive by Theorem 4.6.

If s-generally slender groups Gi (i ∈ I) are mixed separable groups [22],
the conditions 1) – 3) of Theorem 3.1 can be replaced by more easy-to-
interpret ones.

Theorem 4.14. Let {Gi}i∈I be a family of separable groups.
The group

∏
i∈I

Gi is fully transitive if and only if the following conditions are

satisfied:
1) if for a prime number p there exists a torsion free direct summand C from
G such that pC �= C, then Tp(G) =

∏
i∈I

Tp(Gi);

2) π(A) ∩ π(B) = ∅ takes place for all non-isomorphic torsion free rank 1
direct summands A and B from G.

Proof. Since separable groups are s-generally slender, the system {Gi}i∈I
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satisfies the condition of finiteness by Theorem 3.1. Then the condition
1) is satisfied by Theorem 4.3. Validity of the condition 2) follows from
Lemmas 2.2 and 2.1. Conversely. Let a, b ∈ G and H(a) ≤ H(b), where
a = (. . . , ai, . . . ), b = (. . . , bi, . . . ). The elements ai, bi ∈ Gi can be embed-
ded into a completely decomposable direct summand G′

i of the group Gi for
each i ∈ I, i.e., G′

i = Ai ⊕Bi, where Ai is a completely decomposable torsion
free finite rank group, and Bi is a direct sum of a finite number of cyclic
p -groups. It means that the elements a and b belong to the direct summand
G′ =

∏
i∈I

Ai ⊕
∏
i∈I

Bi of the group G. So, to prove existence of ϕ ∈ E (G) such

that ϕ(a) = b, it is sufficient to show that G′ is a fully transitive group. By
virtue of the previous Theorem, fully transitivity of the group G′ is seen from
the fact that

∏
i∈I

Ai is a fully transitive group and {Bi}i∈I is a fully transitive

system. Fully transitivity of the latter follows from Corollaries 3.9 and 3.7.
Fully transitivity of

∏
i∈I

Ai is shown in Corollary 2.7.

Corollary 4.15. A separable abelian group is fully transitive if and only
if π(A) ∩ π(B) = ∅ takes place for all its non-isomorphic torsion free rank 1
direct summands A and B.

Below we study split direct product of s-generally slender groups in con-
nection with the property of fully transitivity.

Since a mixed group is split if and only if its reduced subgroup is split,
the groups in the following proposition and its corollaries are supposed to be
reduced.

Proposition 4.16. Let
∏
i∈I

Gi be a mixed group. The group G is split if

and only if the following conditions are satisfied:
1) if Gi (i ∈ I) is a mixed group, it is split;
2) T (

∏
i∈I

Gi) =
∏
i∈I

T (Gi).

Proof. The condition 1) follows from [47, p. 224]. Let’s prove 2). Sup-
pose the contrary, i.e., let T (

∏
i∈I

Gi) �=
∏
i∈I

T (Gi). Then the group
∏
i∈I

T (Gi) contains an element g such that o(g) = ∞,

g = (. . . , gi, . . . ) and o(gi) = ni (ni ∈ N) for any i ∈ I. Consider an arbitrary
coordinate gi �= 0 and let ni = pki

i mi, where pi is a prime number such that

32



(pi, mi) = 1 and ki, mi ∈ N. Then the element migi is of order pki
i . The group

Gi, as seen from Lemma 4.1, contains a cyclic direct summand Ai of order
not less than pki

i . Since o(g) = ∞, one can find a coordinate gj of the element

g and a prime number pj such that o(gj) = p
kj

j mj , where (pj, mj) = 1 and

kj, mj ∈ N, p
kj

j > pki
i . Then, according to Lemma 4.1, the group Gj contains

a cyclic direct summand Aj of order not less than p
kj

j . Continuing in such a
way, we obtain a system of groups {Ai}i∈I′, where I ′ ⊆ I and |I ′| = ℵ0, whose
orders are collectively unbounded. Since each group Ai (i ∈ I ′) is a direct
summand in the group Gi, we have

∏
i∈I

Gi =
∏

i∈I\I′
Gi ⊕

∏
i∈I′

Bi ⊕
∏
i∈I′

Ai, where

Gi = Ai ⊕Bi for any i ∈ I ′. Since
∏
i∈I

Gi is split, each direct summand of this

group is also spilt, i.e.,
∏
i∈I′

Ai = A⊕T (
∏
i∈I′

Ai), where A is a torsion free group.

However, T (
∏
i∈I′

Ai) is a bounded group [46, Corollary 40.3], what contradicts

the fact that the group contains an unbounded subgroup ⊕
i∈I′

Ai. Conversely.

Since the condition 1) is satisfied, we have Gi = Ai ⊕ T (Gi) (i ∈ I), where
Ai is a torsion free group. Then

∏
i∈I

Gi =
∏
i∈I

Ai ⊕
∏
i∈I

T (Gi) =
∏
i∈I

Ai ⊕ T (
∏
i∈I

Gi).

Corollary 4.17. If G =
∏
i∈I

Gi isa mixed group, where Gi (i ∈ I) are

torsion groups, the group G is not split.

Corollary 4.18. Let G =
∏
i∈I

Gi be a mixed group, {Gi}i∈I be a system of

groups satisfying the condition of finiteness. The group G is split if and only
if the following conditions are satisfied:
1) if Gi (i ∈ I) is a mixed group, it is split;
2) if for a prime number p one can find such a torsion free direct summand
A of the group G that pA = A, then Tp(

∏
i∈I

Gi) =
∏
i∈I

Tp(Gi).

3) ⊕
p∈π

∏
i∈I

Tp(Gi) =
∏
i∈I

⊕
p∈π

Tp(Gi).

Proof. Necessity follows from Proposition 4.16. To prove necessity, we
have to demonstrate that T (

∏
i∈I

Gi) =
∏
i∈I

T (Gi). Let p be a prime number for which one can find i ∈ I such that

the group Gi/T (Gi) is not p -divisible. Since the system {Gi}i∈I satisfies the
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condition of finiteness, it follows that Tp(
∏
i∈I

Gi) =
∏
i∈I

Tp(Gi) by Corollary 4.4.

Then we have T (
∏
i∈I

Gi) = ⊕
p∈π
Tp(

∏
i∈I

Gi) = ⊕
p∈π

∏
i∈I

Tp(Gi) =
∏
i∈I

⊕
p∈π

Tp(Gi) =
∏
i∈I

T (Gi).

Corollary 4.19. A fully transitive mixed group G equal to a direct prod-
uct of s-generally slender groups Gi (i ∈ I) is split if and only if the following
conditions are satisfied:
1) if Gi (i ∈ I) is a mixed group, it is split;
2) if for a prime number p one can find such a torsion free direct summand
A of the group G that pA = A, Tp(

∏
i∈I

Gi) =
∏
i∈I

Tp(Gi).

3) ⊕
p∈π

∏
i∈I

Tp(Gi) =
∏
i∈I

⊕
p∈π

Tp(Gi).

Proof follows from Theorem 3.1 and the previous Corollary.

The following theorem represents influence of fully transitivity on sepa-
rability of a direct product of abelian reduced groups.

Theorem 4.20. A group G =
∏
i∈I

Gi is a fully transitive separable group

if and only if the following conditions are satisfied:
1) Gi is a separable group for any i ∈ I;
2) π(A) ∩ π(B) = ∅ takes place for all homogeneous torsion free direct sum-
mands A and B from G such that t(A) �= t(B);

3) G = ⊕
i∈J1

Gi ⊕ ⊕
i∈J2

Ai ⊕
k⊕

j=1

∏
i∈I′

A
(j)
i ⊕ ∏

i∈I\J1

T (Gi), where J1, J2 are finite sets

such that J1 ⊂ I, J2 ⊂ I\J1, I
′ = I\(J1∪J2);

∏
i∈I\J1

T (Gi) is a bounded group;

Ai
∼= Gi/T (Gi) for any i ∈ I \J1;

∏
i∈I′

A
(j)
i (j = 1, k) are homogeneous torsion

free groups and if
∏
i∈I′

A
(j)
i �= ⊕

i∈I′
A

(j)
i for a certain j = 1, k, then

∏
i∈I′

A
(j)
i is of

idempotent type; ⊕
i∈J2

Ai is a homogeneously decomposable torsion free group.

Proof. Necessity. The condition 2) follows from Lemma 2.2 and Lemma
2.1. The condition 1) is satisfied due to [42, Corollary 3]. Let’s show valid-
ity of condition 3). Since G is a separable group, the conditions 2) and 3)
from [42, Corollary 3 ] are satisfied. It means that there exists a finite subset
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J1 ⊂ I such that the groups T (Gi) (i ∈ I \J1) are collectively bounded. Then
G = ⊕

i∈J1

Gi ⊕
∏

i∈I\J1

Gi = ⊕
i∈J1

Gi ⊕
∏

i∈I\J1

Ai ⊕
∏

i∈I\J1

T (Gi), where Ai
∼= Gi/T (Gi)

for any i ∈ I \ J1 and
∏

i∈I\J1

T (Gi) is a bounded torsion group. The finite

subset J2 ⊂ I \ J1 and k ∈ N such that
∏

i∈I\J1

Ai =
∏

i∈J2

Ai ⊕
∏
i∈I′

Ai, where

k = max |τ(Ai)|i∈I′, and τ(Ai) (i ∈ I ′, I ′ = I \ (I1 ∪ I2)) is the type set of
torsion free rank 1 direct summands of the groups Ai, exist due to condition
2) of the Corollary and condition b) from [42, Corollary 3]. Since each group
Ai (i ∈ I ′) is a fully transitive separable torsion free group, it is homogeneous-

ly decomposable by Theorem 2.4. Then
∏
i∈I′

Ai =
∏
i∈I′

k⊕
j=1

A
(j)
i =

k⊕
j=1

∏
i∈I′

A
(j)
i ,

and
∏
i∈I′

A
(j)
i is of idempotent type for any j = 1, k such that

∏
i∈I′

A
(j)
i �= ⊕

i∈I′
A

(j)
i

[3]. The fact that ⊕
i∈J2

Ai is a homogeneously decomposable group follows also

from its fully transitivity and separability. Sufficiency. Since the conditions
of Theorem 4.14 are satisfied, G is a fully transitive group. The group Gi is
separable for any i ∈ I. So, to prove separability of the group G, it is suffi-
cient to see that

∏
i∈I′

A
(j)
i is a separable group for any j = 1, k [42, Corollary 3].

Note. If the groups Gi (i ∈ I) in Theorem 4.20 are countable, one can

obtain additional information about the groups ⊕
i∈J1

Gi ⊕ ⊕
i∈J2

Ai and A
(j)
i (i ∈

I ′, j = 1, k) from the condition 3): these groups are completely decompos-
able [22, Corollary 1.6]. It follows that if G is a mixed group, it is split.
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