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Quotient divisible and almost completely decomposable
groups

Alexander A. Fomin

Abstract. The quotient divisible abelian groups, which are dual to thealmost completely decompos-
able torsion-free abelian groups, are investigated. In particular, the well known example of anom-
alous direct decompositions by A.L.S. Corner is consideredon dual quotient divisible groups.
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1 Introduction

The notion of quotient divisible group has been introduced in [1] as a generalization of
two classes of group. The first one is the classG of honestly mixed groups introduced
earlier by S. Glaz and W. Wickless [2], and the second class is the well known class
of torsion free quotient divisible groups by R. Beaumont and R. Pierce[3]. The mixed
quotient divisible groups are considered also in [4-11]. The main result motivating the
introduction of the quotient divisible mixed groups is the duality between the quotient
divisible groups and the torsion free groups of finite rank introduced in [1] as well.

The almost completely decomposable groups have been researched by many au-
thors for a long time. We mention contributions of D. Arnold, K. Benabdallah, E.A.
Blagoveshenskaya, R. Burkhardt, A.L.S. Corner, M. Dugas, T. Faticoni, L. Fuchs, R.
Goebel, B. Jonsson, S.F. Kozhukhov, A. Mader, O. Mutzbauer, E.Lee Lady, F. Loon-
stra, J. Reid, P. Schultz, C. Vinsonhaler, A.V. Yakovlev, the list is obviously far from
being complete.

The main goal of the present paper is an application of the mentioned above dual-
ity for investigation of the almost completely decomposable groups. Since the original
duality is a duality of categories with quasi-homomorphisms, a direct application is im-
possible. There is no difference between the almost completely decomposable groups
and the completely decomposable groups in such a category. Thus we use a new ap-
proach developed in [10].

Every pair consisting of a torsion free groupA and a basis (a maximal linearly
independent set of elements)x1, . . . , xn of A gives a dual pair consisting of a quo-
tient divisible groupA∗ and a basisx∗

1, . . . , x∗

n of A∗ and conversely. It is proved
(Corollary 10) that for every almost completely decomposable groupA it is possible
to choose a basisx1, . . . , xn of A such that the quotient divisible groupA∗ is decom-
posed into a direct sum of rank-1 quotient divisible subgroups. This is asimplifica-
tion. Considering a finite extensionA of a completely decomposable groupB and a
common basisx1, . . . , xn for two groups, we obtain two dual basesx∗

1B , . . . , x∗

nB and
x∗

1A, . . . , x∗

nA according toB and toA. They differ by torsion elementst1, . . . , tn such
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thatx∗

1A = x∗

1B + t1, . . . , x
∗

nA = x∗

nB + tn. The basisx∗

1A, . . . , x∗

nA and therefore the
sequencet1, . . . , tn determines completely the groupA in this configuration with the
fixed basisx1, . . . , xn. In such a way we obtain a description of the almost completely
decomposable groups (Theorem 15) in terms of the sequences(t1, . . . , tn) of torsion
elements. Note that all quotient divisible groups considered in Theorem 15 are decom-
posed into a direct sum of rank-1 quotient divisible subgroups, while their dual almost
completely decomposable groups can be indecomposable (Theorem 11and Corollary
16) or they can have anomalous direct decompositions as in an example below.

In the final section we apply this description for a dualization of the famous mas-
terpiece by A.L.S. Corner [12]. For every pair 0< k ≤ n of integers, there exists
a torsion free groupC of rank n such that for every decomposition of the number
n = n1 + . . . + nk into a sum ofk positive integers, the groupC can be decomposed
into a direct sum ofk indecomposable subgroups of ranksn1, . . . , nk, respectively.

2 Preliminaries

All groups will be additive abelian groups. Letn be a positive integer andp a prime
number,Z, Q, Zn = Z/nZ, Ẑp denote the ring of integers, the field of rational numbers,
the ring of residue classes modulon, the ring ofp-adic integers, respectively.Qp =
{

m
n
∈ Q |g.c.d. (n, p) = 1

}
andQ(p) =

{
m
pn ∈ Q |m, n ∈ Z

}
. The ringẐ =

∏
p

Ẑp is

the Z-adic completion ofZ, it is called the ring ofuniversal integers. The additive
groups of the rings have the same notations.

If x1, . . . , xn are elements of an abelian groupA, then〈x1, . . . , xn〉 is the subgroup
of A generated by these elements,〈x1, . . . , xn〉∗ is the pure hull of these elements, that
is a ∈ 〈x1, . . . , xn〉∗ ⇔ there exists a nonzero integerm such thatma ∈ 〈x1, . . . , xn〉 .
In particular, all torsion elements ofA belong to〈x1, . . . , xn〉∗ . At last, 〈x1, . . . , xn〉R
denotes the submodule of anR-module generated by these elements.

A set of elementsx1, . . . , xn of an abelian group (of anR-module) is calledlinearly
independent overZ, if every equalitym1x1 + . . .+mnxn = 0 with integer coefficients
implies m1 = . . . = mn = 0. A set of elementsx1, . . . , xn of a Ẑ-module is called
linearly independent over̂Z, if every equalityα1x1 + . . . + αnxn = 0 with universal
integer coefficients impliesα1x1 = . . . = αnxn = 0. In particular, the set 0, . . . , 0 is
linearly independent over̂Z.

We use the characteristics(mp) and the typesτ = [(mp)] in the same manner as
in [13] denoting the zero characteristic and the zero type by 0. As usual(mp) ≥ (kp)
if mp ≥ kp for all prime numbersp. In this case we define(mp) − (kp) = (mp − kp)
setting∞−∞ = 0.

If α = (αp) ∈ Ẑ, we define thecharacteristic ofα aschar (α) = (mp) , whereαp

is divisible bypmp in Ẑp andmp is the maximal power. Ifαp = 0 thenmp = ∞. Every

finitely generated idealI of the ringẐ is of the formI = Iχ =
{

α ∈ Ẑ |char (α) ≥ χ
}

for a characteristicχ. Let Zχ = Ẑ/Iχ. As a Ẑ-module,Zχ is cyclic and finitely pre-
sented.
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A Ẑ-moduleM is calledfinitely presented,if there exists an exact sequence ofẐ-
module homomorphismŝZm → Ẑn → M → 0 for positive integersm andn. Every
finitely presented̂Z-moduleM is of the formM ∼= Zχ1⊕. . .⊕Zχn

. The decomposition
is not unique in general, even the number of summands is not an invariant. But it is
uniquely definite at the additional condition on the characteristicsχ1 ≤ . . . ≤ χn.

Every finitely generated submoduleN of a finitely presented̂Z-moduleM is finitely
presented and the quotientM/N is finitely presented as well, see [14].

For an elementx of a finitely presented̂Z-moduleM and a primep, we define:
mp is the greatest nonnegative integer such thatpmp divides x in M and kp is the
least nonnegative integer such that the elementpkpx is divisible by all powers ofp. If
such a numbermp or kp doesn’t exist thenmp = ∞ or kp = ∞, respectively. The
characteristicschar (x) = (mp) andcochar (x) = (kp) are called thecharacteristic
and theco-characteristicof the elementx in the moduleM. The type[cochar (x)] is
called theco-typeof the elementx. The co-characteristic is an analog of the order of
an element. Ifx ∈ Zχ thencochar (x) = χ− char (x) andchar (x) ≥ χ− cochar (x) ,
the inequality can be strict.

The ringR =

〈
1,
⊕
p

Ẑp

〉

∗

⊂ Ẑ is called the ring ofpseudo-rationalnumbers.

See [8] for basic properties of this ring, where the concept has been introduced. The
mentioned class of mixed groupsG has the following characterization. The category of
groupsG coincides with the category of all finitely generatedR-modules such that their
p-components are torsion for all prime numbersp (Theorem 5.2 in [8]). A.V. Tsarev is
developing an interesting theory of modules over the ring of pseudo-rational numbers
in [11,15,16] which is very close to the quotient divisible group theory.

For every characteristicχ = (mp) we define the idealJχ =
⊕
p

pmpẐp of the ring

R, assumingp∞ = 0, and the ringR (χ) = R/Jχ. An inequalityχ ≥ κ for two
characteristics implies the inclusionJχ ⊂ Jκ which determines in turn the natural
homomorphism of rings

gχ
κ : R (χ) → R (κ) for χ ≥ κ.

In this paper we are interested in the subringsRχ = 〈1〉
∗
⊂ R (χ) of the ringsR (χ)

keeping the same notation for their additive groups as well. Restrictions ofgχ
κ on Rχ

induce the following spectrum of homomorphisms of rings (abelian groups)

gχ
κ : Rχ → Rκ for χ ≥ κ. (2.1)

Note that the homomorphisms (2.1) are not necessarily surjective, for example, the
natural embeddingZ → Q is exactly the homomorphismgχ

κ for the pair of charac-
teristicsχ = (∞,∞, . . .) ≥ κ = (0, 0, . . .) . If a characteristicχ = (mp) belongs to
a nonzero type, then the ringRχ coincides with the subring〈1〉

∗
⊂ Zχ. In this case,

the co-characteristic of 1 inZχ coincides withχ. This is one of the reasons why we’ll
call the characteristicχ as theco-characteristicof the groupRχ. If a characteristic
χ = (mp) belongs to the zero type, thenRχ = Zm ⊕ Q, wherem =

∏
p

pmp .
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3 Quotient divisible groups

Definition ([1]) An abelian groupA without nonzero torsion divisible subgroups is
called quotient divisibleif it contains a free subgroupF of finite rank such that the
quotient groupA/F is torsion divisible. Every free basisx1, . . . , xn of the groupF is
called abasisof the quotient divisible groupA, the numbern is therankof A.�

The groupsRχ serve as examples of the quotient divisible groups. The rank ofRχ

is equal to 1 and a basis ofRχ is the unity element 1∈ Rχ consideringRχ as a ring.
And what is more, every quotient divisible group of rank 1 is isomorphicto a groupRχ

for some characteristicχ, andRχ ∼= Rκ ⇐⇒ χ = κ (see [7]). Therefore an arbitrary
quotient divisible groupA of rank 1 with a basisx may be denoted asA = xRχ and
the characteristicχ is theco-characteristicof the quotient divisible rank-1 groupA.

As it is shown in [1] and [10], every reduced quotient divisible groupA can be
presented as a pure hullA ∼= 〈x1, . . . , xn〉∗ ⊂ M of a linearly independent overZ set of
elementsx1, . . . , xn of a finitely presented̂Z-moduleM such thatM = 〈x1, . . . , xn〉 bZ .

Namely,M = Â is theZ-adic completion ofA and the setx1, . . . , xn is the image of a
basis ofA in Â.

The divisible part of a quotient divisible group is a divisible torsion free group of
finite rank. A reduced complement of the divisible part is not necessarily quotient
divisible, for example it is true for a groupRχ, whereχ is a nonzero characteristic
of the zero type. In general, this complement is a direct sum of a finite group and a
quotient divisible reduced group.

The following lemma is useful for us. Letp be a prime number, we understand
underp-rank of a groupA the dimension of the vector spaceA/pA over the fieldZp.

Lemma 1 (of complement) LetA be a quotient divisible group and〈t〉 a cyclicp-
primary group for a prime numberp. If thep-rank ofA is strictly less than the rank of
A, then the groupA ⊕ 〈t〉 is quotient divisible as well.

Proof Let x1, . . . , xn be a basis ofA andr = rankpA, r < n. The vector space
A/pA over the fieldZp is generated by the set of vectorsx1 = x1 + pA, . . . , xn =
xn + pA. This set of vectors contains a basis, sayx1, . . . , xr, of A/pA. Then the set
of elementsx1, . . . , xr, xr+1 + t, xr+2, . . . , xn is a basis of the quotient divisible group
B = A ⊕ 〈t〉 .�

4 Duality

The duality [1] between the quotient divisible groups and the torsion free groups of
finite rank can be considered as a part of a more general constructionas it has been done
in [10]. Namely, we have a commutative diagram of the following categoryfunctors.

RM

c′ րւ c b ցտ b′

QD

d
⇄

d′ QT F

(4.1)
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It is convenient to consider three objects simultaneously. Thus we prefer to call
the situation ”the triplicity” such that the dualityd andd′ is a part of it. We briefly
introduce now all three categories and the functors referring a readerto [10] for details.

(i) An object of the categoryRM is an arbitrary sequence of elementsx0
1, . . . , x

0
n of

an arbitrary finitely presented̂Z-module. Note that, choosing a basisy1, . . . , ym

of the moduleM =
〈
x0

1, . . . , x
0
n

〉bZ = y1Zχ1 ⊕ . . . ⊕ ymZχm
,we obtain a matrix


α11 · · · α1n

· · · · · · · · ·

αm1 · · · αmn


 with αij ∈ Zχi

at the equalitiesx0
i = α1iy1+ . . .+αmiym

, i = 1, . . . , n. The matrix is reduced, i.e. its columns generate theẐ-moduleM.
This point of view has been employed in [10]. That is why the categoryRM is
called the category of reduced matrices.

(ii) An object of the categoryQT F is a pair consisting of a torsion-free finite-rank
groupA and its basisx1, . . . , xn, that is a maximal linearly independent set of
elements. For an objectx0

1, . . . , x
0
n of the categoryRM, the objectb

(
x0

1, . . . , x
0
n

)

of the categoryQT F is defined in the following way. We defineA as a group
located between a free groupF and a divisible groupV

F = x1Z ⊕ . . . ⊕ xnZ ⊂ A ⊂ x1Q ⊕ . . . ⊕ xnQ = V.

For elementsγ1 = a1
k

+ Z, . . . , γn = an

k
+ Z of the groupQ/Z, we defineγ1x1 +

. . . + γnxn = k−1 (a1x1 + . . . + anxn) ∈ V. Then

A =
〈
f
(
x0

1

)
x1 + . . . + f

(
x0

n

)
xn

∣∣f ∈ HombZ (M, Q/Z)
〉
,

remindingM =
〈
x0

1, . . . , x
0
n

〉 bZ . Conversely (the functorb′), we define a function
x0

i : A/F → Q/Z in the following way. Letz = k−1 (a1x1 + . . . + anxn) + F ∈
A/F. Thenx0

i (z) = ai

k
+ Z ∈ Q/Z, i = 1, . . . , n. Thus the elementsx0

1, . . . , x
0
n

belong to the finitely presented̂Z-moduleM = HombZ (A/F, Q/Z) . Note that
the groupM = HombZ (A/F, Q/Z) with theZ-adic topology coincides with the
group of Pontryagin’s characters ([17]) for the discrete groupA/F.

(iii) An object of the categoryQD is a pair consisting of a quotient divisible group
A∗ and its basisx∗

1, . . . , x∗

n. The objectc
(
x0

1, . . . , x
0
n

)
of the categoryQD is de-

fined in the following way. Letd1, . . . , dn be a linearly independent set of ele-
ments of a torsion-free divisible groupD. Then

x∗

1 = x0
1 + d1, . . . , x

∗

n = x0
n + dn (4.2)

is a linearly independent set of the groupM ⊕ D, whereM is here the additive
group of theẐ-moduleM =

〈
x0

1, . . . , x
0
n

〉bZ . And at last,A∗ = 〈x∗

1, . . . , x
∗

n〉∗
is the pure hull of the elementsx∗

1, . . . , x∗

n in the groupM ⊕ D. It is clear that
this definition of the quotient divisible groupA∗ doesn’t depend up to isomor-
phism on the choice of the elementsd1, . . . , dn . Nevertheless we can use fur-
ther the freedom of choice for the elementsd1, . . . , dn considering inclusions
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in the Theorem 3. Conversely (the functorc′), let µ : A∗ → Â∗ be theZ-
adic completion of a quotient divisible groupA∗ (see [13], Chapter 39). Then
x0

1 = µ (x∗

1) , . . . , x0
n = µ (x∗

n) .

The functorsd andd′ are defined like thisd = bc′ andd′ = cb′.
The morphisms from an object

(
x0

1, . . . , x
0
n

)
to an object

(
z0

1, . . . , z
0
k

)
of the cat-

egoryRM are pairs(ϕ, T ) , whereϕ :
〈
x0

1, . . . , x
0
n

〉 bZ →
〈
z0

1, . . . , z
0
k

〉bZ is a quasi-

homomorphism of thêZ-modules andT is a matrix with rational entries of dimen-
sionk × n, such that the equality

(
ϕx0

1, . . . , ϕx0
n

)
=
(
z0

1, . . . , z
0
k

)
T takes place in the

moduleQ ⊗
〈
z0

1, . . . , z
0
k

〉bZ . The morphisms of the categoriesQD andQT F are the
quasi-homomorphisms of groups. The functorsb andc transform a morphism(ϕ, T )
of the categoryRM to the morphismsf : B → A in QT F andf∗ : A∗ → B∗ in
QD, whereB, z1, . . . , zk andB∗, z∗1 , . . . , z∗k correspond to the objectz0

1, . . . , z
0
k, the

quasi-homomorphismsf andf∗ are defined by the matrix equalities




f (z1)

· · ·

f (zk)


 =

T




x1

· · ·

xn


 and(f∗ (x∗

1) , . . . , f∗ (x∗

n)) = (z∗1 , . . . , z∗k)T.

It is shown in [10] that the mutually inverse functorsc andc′ present a category
equivalence. The functorsb andb′ present a category duality, which can be considered
as a modern version of the description by Kurosh-Malcev-Derry. Thefunctorsd andd′

present the category duality [1].
Note that our definitions of the categoriesQD andQT F differ a little bit from the

original definitions in [1] and [10], where the objects are groups and themorphisms
are quasi-homomorphisms. But evidently our definitions (with fixed bases) give the
equivalent categories and we may keep the same notations for them. Thebasis fixing
gives an advantage for the investigations of almost completely decomposable groups.
It allows to introduce the following definition.

Definition A triple is a set of three objects of the categoriesRM, QD andQT F
such that each of them corresponds to each other at the functors of thediagram (4.1).
Namely, it is:

• A set of elementsx0
1, . . . , x

0
n of a finitely presented̂Z-module,

• A torsion-free finite-rank groupA with a basisx1, . . . , xn,

• A quotient divisible groupA∗ with a basisx∗

1, . . . , x∗

n. �

We underline that every element of the triple determines uniquely the remaining
two objects of the triple. Moreover, we consolidate further this notation for atriple to
simplify formulations without an additional explanation.

Theorem 2([10]) The following statements are equivalent for a triple:

(i) A = B ⊕ C, whereB = 〈x1, . . . , xk〉∗ andC = 〈xk+1, . . . , xn〉∗ ,

(ii)
〈
x0

1, . . . , x
0
n

〉bZ =
〈
x0

1, . . . , x
0
k

〉 bZ ⊕
〈
x0

k+1, . . . , x
0
n

〉 bZ ,

(iii) A∗ = B∗ ⊕ C∗.�
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In this theorem, the groupsB, B∗ and the setx0
1, . . . , x

0
k form a separate triple as

well as the groupsC, C∗ with the setx0
k+1, . . . , x

0
n. In particular, we use the pure hull〈

x0
1, . . . , x

0
k

〉
∗

in
〈
x0

1, . . . , x
0
k

〉bZ , but not in
〈
x0

1, . . . , x
0
n

〉bZ , by the construction of the
reduced part of the groupB∗ at the functorc.

5 Change of bases

Two different basesx1, . . . , xn andy1, . . . , yn of a torsion free groupA give us two
different triples. One of them contains also a setx0

1, . . . , x
0
n of a finitely presented̂Z-

module and a quotient divisible groupA∗

X with a basisx∗

1, . . . , x
∗

n. The second one
contains a sety0

1, . . . , y
0
n and a quotient divisible groupA∗

Y with a basisy∗

1 , . . . , y∗

n. The
following theorem considers relations between them.

Theorem 3 Let two basesx1, . . . , xn and y1, . . . , yn of a torsion free groupA be
written in the form of columnsX andY. If X = SY for a nonsingular matrixS with
integer entries, then:

(i) The Ẑ-module
〈
y0

1, . . . , y
0
n

〉 bZ is a submodule of index|detS| of the module〈
x0

1, . . . , x
0
n

〉bZ and the following matrix equality takes place

(
y0

1, . . . , y
0
n

)
=
(
x0

1, . . . , x
0
n

)
S. (5.1)

(ii) Defining the bases of the groupsA∗

X andA∗

Y by the equalities (4.2), we can choose
elementsd1, . . . , dn in these equalities such thatA∗

Y ⊂ A∗

X and the following
equality takes place

(y∗

1, . . . , y∗

n) = (x∗

1, . . . , x∗

n)S. (5.2)

Moreover|A∗

X/A∗

Y | = |detS| , where|detS| is the absolute value of the determi-
nant.

Proof SinceX = SY, the following inclusion takes placeF = 〈x1, . . . , xn〉 ⊂
G = 〈y1, . . . , yn〉 ⊂ A. Applying the functorHom (−, Q/Z) to the short exact se-

quence 0→ G/F
i
→ A/F

j
→ A/G → 0, we obtain the exact sequence ofẐ-modules

0 → M1
j∗

→ M
i∗

→ Hom (G/F, Q/Z) → 0, whereM1 =
〈
y0

1, . . . , y
0
n

〉 bZ , M =〈
x0

1, . . . , x
0
n

〉 bZ and theẐ-module on the right is a finite abelian group which is iso-
morphic to the groupG/F.

An arbitrary elementz of the groupA/F is of the formz = m−1

(
n∑

i=1
aixi

)
+ F ,

whereai ∈ Z, 0 6= m ∈ Z. Substitutingxi =
n∑

k=1
sikyk, whereS = ‖sik‖ andX = SY,

we obtainz = m−1

(
n∑

i=1
ai

n∑
k=1

sikyk

)
+ F = m−1

(
n∑

k=1

(
n∑

i=1
aisik

)
yk

)
+ F. By

the definition of the elementsx0
i andy0

i in Section 4 ”Duality”, item 2, the function

z 7−→ m−1

(
n∑

i=1
aisik

)
+ Z ∈ Q/Z is exactly the functionj∗

(
y0

k

)
: A/F → Q/Z
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andx0
i (z) = m−1ai + Z ∈ Q/Z. Identifying j∗

(
y0

k

)
= y0

k, we obtain finallyy0
k (z) =

m−1

(
n∑

i=1
aisik

)
+ Z =

n∑
i=1

(
m−1ai + Z

)
sik =

n∑
i=1

x0
i (z) sik. Since the values of two

functionsy0
k (z) and

n∑
i=1

x0
i (z) sik coincide for everyz ∈ A/F, the functions coincide

as well and the equality(5.1) is proved.
The index ofM1 in M is equal to|G/F | . The matrixS can be presented in the form

S = T1TT2, whereT1 andT2 are invertible,T is diagonal and they are all with integer
entries. The matrix equalityX = SY = (T1TT2) Y implies the equalityT−1

1 X =

T (T2Y ) . Thus the basisT−1
1 X of the free groupF is expressed over the basisT2Y of

the free groupG with help of the diagonal matrixT =




t1 0 · · · 0

· · ·
... · · ·

0 0· · · tn


 . Hence

G/F = C1 ⊕ . . . ⊕ Cn, where the direct summandsC1, . . . , Cn are cyclic of order
|t1| , . . . , |tn|, respectively. Therefore|G/F | = |t1| · . . . · |tn| = |detS| . It accomplishes
the proof of the first part of the theorem.

If we just have, say,x∗

1 = x0
1 + d1, . . . , x

∗

n = x0
n + dn, then we choose ele-

mentsd′1, . . . , d
′

n of the divisible torsion free groupD = 〈d1, . . . , dn〉∗ in such a way
that (d′1, . . . , d

′

n) = (d1, . . . , dn) S. Defining y∗

1 = y0
1 + d′1, . . . , y

∗

n = y0
n + d′n, we

obtain immediatelyA∗

Y ⊂ A∗

X and the equality(5.2) . The only thing to do is to
prove |A∗

X/A∗

Y | = |detS| . Without loss of generality assumeA∗

X =
〈
x0

1, . . . , x
0
n

〉
∗
,

that is the setx0
1, . . . , x

0
n is linearly independent overZ. The natural homomorphism

θ : A∗

X → M/M1 is surjective, because the images of elementsx0
1, . . . , x

0
n gener-

ate the finite groupM/M1. The kernel ofθ is equal toA∗

X ∩ M1 and the intersection
A∗

X ∩
〈
y0

1, . . . , y
0
n

〉 bZ coincides in turn withA∗

Y . We obtain finallyA∗

X/A∗

Y
∼= M/M1

∼=
G/F.�

We distinguish a particular case of Theorem 3.
Corollary 4 Letx1 = my1, . . . , xn = myn for an integerm 6= 0. Then

〈
y0

1, . . . , y
0
n

〉 bZ ⊂〈
x0

1, . . . , x
0
n

〉 bZ andy0
1 = mx0

1, . . . , y
0
n = mx0

n.�

Corollary 5 Let two sequencesx0
1, . . . , x

0
n andy0

1, . . . , y
0
n of elements be given in a

finitely presented̂Z-module. If a matrix equality
(
y0

1, . . . , y
0
n

)
=
(
x0

1, . . . , x
0
n

)
S takes

place for an integer matrixS with detS = ±1, then the torsion free groups coincide
and the quotient divisible groups coincide in two triples corresponding to the given
sequences. In particular, the groupsA andA∗ do not depend on the order of elements
in the sequencex0

1, . . . , x
0
n of a triple.�

Corollary 6 The dual quotient divisible (torsion free) group with respect to a basis
x1, . . . , xn (x∗

1, . . . , x
∗

n) doesn’t depend on the choice of the basis in the free group
F = 〈x1, . . . , xn〉 (F ∗ = 〈x∗

1, . . . , x∗

n〉) . Therefore, it depends only on the choice of
the free subgroupF (F ∗) . Moreover, it doesn’t depend even on the choice of the free
subgroup up to quasi-equality.�

The following example shows that an indecomposable quotient divisible group can
be dual to a completely decomposable torsion free group.

Example 1 We consider a torsion free groupA = x1Q2 ⊕ x2Q5 with the basis
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x1, x2. The dual quotient divisible groupA∗

X with respect to this basis is of the form
A∗

X = x∗

1Q(2) ⊕ x∗

2Q
(5). Let us consider now two new bases of the groupA : y1 =

1
3 (x1 − x2) , y2 = x2 andz1 = 1

3x1, z2 = 1
3x2. We have

(
x1

x2

)
=

(
3 1
0 1

)(
y1

y2

)

and

(
y1

y2

)
=

(
1 −1
0 3

)(
z1

z2

)
in the groupA. By Theorem 3 and Corollary 4,

we obtain the inclusions for dual quotient divisible groupsA∗

Z ⊂ A∗

Y ⊂ A∗

X and the
relationsz∗1 = 3x∗

1, z∗2 = 3x∗

2 andz∗1 = y∗

1, z∗2 = −y∗

1+3y∗

2 andy∗

1 = 3x∗

1, y∗

2 = x∗

1+x∗

2.

Note thatA∗

Z = z∗1Q(2) ⊕ z∗2Q(5) = 3 A∗

X
∼= A∗

X andA∗

Y =
〈
A∗

Z ,
z∗

1 +z∗

2
3

〉
. The group

A∗

Y is indecomposable (see [13], Example 88.2).�

6 Almost completely decomposable groups

For a characteristicχ, we denote byRχ the subgroup ofQ such that 1∈ Rχ and the
characteristic of 1 inRχ is equal toχ. The lattice of characteristics gives a spectrum of
the natural embeddings

fχ
κ : Rκ → Rχ for κ ≤ χ, (6.1)

wherefχ
κ (1) = 1. The quotient divisible groupRχ is dual toRχ with respect to the

natural basis 1∈ Rχ and the dual basis is 1∗ = 1 ∈ Rχ. The homomorphisms (2.1)
gχ

κ are dual tofχ
κ and the following spectrum of the homomorphisms of the quotient

divisible groups is dual to (6.1)

gχ
κ : Rχ → Rκ for κ ≤ χ, (6.2)

wheregχ
κ (1) = 1. It is interesting to note that every group of the spectrum (6.2) is

naturally a ring and thengχ
κ are homomorphisms of rings, while the groups of the

spectrum (6.1) are subrings ofQ if and only if they are quotient divisible.Rχ =
Rκ ⇐⇒ χ ∨ κ = (∞,∞, . . .) andχ ∧ κ = (0, 0, . . .) .

An arbitrary torsion-free rank-1 group is of the formA = xRχ, wherex is its basis
andχ is the characteristic ofx. The dual toA quotient divisible group isA∗ = x∗Rχ.
The last group can be considered sometimes as a free rank-1 module over the ringRχ.
The basesx andx∗ are mutually dual. The following theorem describes triples for the
completely decomposable groups.

Theorem 7 ([10]) The following statements are equivalent for a triple:

(i) The set of elementsx0
1, . . . , x

0
n is linearly independent over̂Z and the co-characteristics

of these elements areχ1, . . . , χn, respectively.

(ii) A0 = x0
1Zχ1 ⊕ . . . ⊕ x0

n Zχn
, whereA0 =

〈
x0

1, . . . , x
0
n

〉 bZ .

(iii) A = x1Rχ1 ⊕ . . . ⊕ xnRχn
.

(iv) A∗ = x∗

1Rχ1 ⊕ . . . ⊕ x∗

nRχn .�

We are generalizing this theorem on the almost completely decomposable groups
in the present section.
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Definition A set of elementsy1, . . . , yn of a finitely presented̂Z-module is called
almost linearly independent over̂Z if the equalityα1y1+. . .+αnyn = 0 with universal
integer coefficients implies that all the elementsα1y1, . . . , αnyn have finite order, that
is mα1y1 = . . . = mαnyn = 0 for some non-zero integerm.�

Lemma 8 Let y1, . . . , yn be an almost linearly independent set of elements of a
finitely presented̂Z-moduleM = 〈y1, . . . , yn〉 bZ . Then there exist elements of finite or-
der t1, . . . , tn ∈ M such thatM = 〈y1 + t1, . . . , yn + tn〉bZ and the set of the elements
y1 + t1, . . . , yn + tn is linearly independent over̂Z.

Proof For everyi = 1, . . . , n, theẐ-moduleTi = 〈yi〉bZ∩〈y1, . . . , yi−1, yi+1, . . . , yn〉bZ
is finitely presented and cyclic, that is it is isomorphic toZχ for a characteristicχ. Since
the sety1, . . . , yn is almost linearly independent, it follows thatχ belongs to the zero
type and henceTi is a cyclic group. Consider the setP = {p1, . . . , ps} of prime divi-
sors of the orders of the groupsT1, . . . , Tn and carry out the following operation for a
prime numberp ∈ P.

We remind that as every finitely presentedẐ-module the moduleM is of the form
M =

∏
p

Mp, whereMp = 〈a1〉 bZp
⊕ . . . ⊕ 〈an〉 bZp

. The firstr direct summands arep-

primary cyclic groups and the remaining summands are isomorphic toẐp, 0 ≤ r ≤ n.

We obtain a direct decompositionM = 〈a1〉 bZ⊕. . .⊕〈ar〉 bZ⊕N, where theẐ-moduleN
has nop-torsion, and also we obtain the equalitiesy1 = s1 +y′

1, . . . , yn = sn +y′

n with
respect to this decomposition, wheres1, . . . , sn ∈ 〈a1〉bZ ⊕ . . .⊕〈ar〉bZ andy′

1, . . . , y
′

n ∈
N. Let εp be the universal integer such that all its components are zeros exceptfor the
p-component which is equal to 1. The elementsεpy

′

1, . . . , εpy
′

n generate the freep-adic
moduleNp = εpN of rankn−r. Exactlyn−r elements in the sequenceεpy

′

1, . . . , εpy
′

n

are different from 0, otherwise we obtain a contradiction with the property of the almost
linear independence. Therefore,r elements, sayεpy

′

1, . . . , εpy
′

r, are equal to 0. We
define nowz1 = a1 + y′

1, . . . , zr = ar + y′

r, zr+1 = y′

r+1, . . . , zn = y′

n. It is easy to
see thatz1 = y1 + t1, . . . , zn = yn + tn, wheret1, . . . , tn arep-primary elements of the
moduleM, M = 〈z1, . . . , zn〉bZ , and the set of elementsz1 = y1 + t1, . . . , zn = yn + tn
is almost linearly independent.

The corresponding set of prime numbers for the almost linearly independent set of
elementsz1, . . . , zn is equal toP \ {p} . By the hypothesis of induction the statement
of lemma takes place for the elementsz1, . . . , zn, therefore it takes place for the set
y1, . . . , yn as well.�

Theorem 9 The following statements are equivalent for a triple.

(i) The groupA contains a subgroup of finite index of the formx1Rχ1 ⊕ . . .⊕ xnRχn

for some characteristicsχ1, . . . , χn.

(ii) The set of elementsx0
1, . . . , x

0
n is almost linearly independent over̂Z.

(iii) There exist torsion elementst1, . . . , tn ∈ A∗ such thatA∗ = (x∗

1 + t1)Rκ1 ⊕ . . .⊕
(x∗

n + tn)Rκn . Moreover,[κ1] = [χ1] , . . . , [κn] = [χn] .

Proof 1 → 2. DenoteB = x1Rχ1 ⊕ . . . ⊕ xnRχn
andF = 〈x1, . . . , xn〉 . The exact

sequence 0→ B → A → C → 0 induces the exact sequence 0→ B/F → A/F →
C → 0 with a finite groupC ∼= A/B. Applying the functorHom (−, Q/Z) to the



Quotient divisible and almost completely decomposable groups 11

last sequence, we obtain an exact sequence 0→ C0 → A0 → B0 → 0 of Ẑ-module
homomorphisms, where the groupC0 = Hom (C, Q/Z) ∼= C is finite. The elements
x0

1, . . . , x
0
n of the triple are located in thêZ-moduleA0. Supposeα1x

0
1+. . .+αnx0

n = 0
with universal integer coefficients. Passing to theẐ-moduleB0 = x0

1Zχ1⊕ . . .⊕x0
nZχn

we obtain the equalitiesα1x
0
1 = . . . = αnx0

n = 0 in B0. Therefore, the elements
α1x

0
1, . . . , αnx0

n belong to the image ofC0 in A0, that is they are periodic. Hence the
set of elementsx0

1, . . . , x
0
n ∈ A0 is almost linearly independent over̂Z.

2 → 3. Let the setx0
1, . . . , x

0
n be almost linearly independent overẐ. By Lemma

8, A0 =
〈
x0

1, . . . , x
0
n

〉 bZ =
〈
x0

1 + t1, . . . , x
0
n + tn

〉 bZ =
〈
x0

1 + t1
〉bZ ⊕ . . . ⊕

〈
x0

n + tn
〉bZ

for some torsion elementst1, . . . , tn ∈ A0. Since the torsion parts of the groupsA0

andA∗ coincide,t1, . . . , tn ∈ A∗. Moreover, it is easy to see that
〈
x0

1, . . . , x
0
n

〉
∗

=〈
x0

1 + t1, . . . , x
0
n + tn

〉
∗

=
〈
x0

1 + t1
〉
∗
⊕ . . . ⊕

〈
x0

n + tn
〉
∗
. The last pure hulls are

considered in the modules
〈
x0

1 + t1
〉bZ , . . . ,

〈
x0

n + tn
〉bZ , respectively. Thus we obtain

A∗ = (x∗

1 + t1) Rκ1 ⊕ . . .⊕ (x∗

n + tn)Rκn , whereκ1, . . . , κn are the co-characteristics
of the elementsx0

1 + t1, . . . , x
0
n + tn in the moduleA0, which are equivalent to the

co-characteristics of the elementsx0
1, . . . , x

0
n in the moduleA0, which are equivalent in

turn to the characteristicsχ1, . . . , χn, respectively.
3 → 1. We have two bases in the quotient divisible groupA∗, namelyx∗

1, . . . , x∗

n

andy∗

1 = x∗

1 +t1, . . . , y
∗

n = x∗

n+tn. The dual torsion free group with respect to the first
basis coincides with the groupA of the given triple, the fixed basis ofA is x1, . . . , xn.
The dual group with respect to the second basisy∗

1 , . . . , y∗

n belongs to other triple. We
denote it asAY , its basisy1, . . . , yn is dual to the basisy∗

1 , . . . , y∗

n ∈ A∗. By Theorem
7, AY = y1Rκ1 ⊕ . . .⊕ ynRκn

, whereκ1, . . . , κn are co-characteristics of the elements
x0

1 + t1, . . . , x
0
n + tn in the moduleA0.

There exists a non-zero integerm such thatmx∗

1 = my∗

1 , . . . , mx∗

n = my∗

n. The ho-
momorphismf : A∗ → A∗ with f (z) = mz induces two dual quasi-homomorphisms
f∗

1 : A → AY and f∗

2 : AY → A according two different triples. By the defin-
itions of Section 4 ”Duality”,f∗

1 (x1) = my1, . . . , f
∗

1 (xn) = myn and f∗

2 (y1) =
mx1, . . . , f

∗

2 (yn) = mxn. For a non-zero integerk, two morphismskf1 andkf2 are not
only homomorphisms, but monomorphisms as well. Identifying along the monomor-
phismskf1 andkf2, we obtain the inclusions

(
k2m2y1

)
Rκ1 ⊕ . . . ⊕

(
k2m2yn

)
Rκn

⊂ A ⊂ y1Rκ1 ⊕ . . . ⊕ ynRκn
.

Sincekmyi = xi, i = 1, ..., n, under the identification, it follows that the first inclusion
is of the form(kmx1)Rκ1⊕. . .⊕(kmxn)Rκn

⊂ A. Thus we obtain(kmx1)Rκ1⊕. . .⊕
(kmxn) Rκn

⊂ x1Rχ1 ⊕ . . . ⊕ xnRχn
⊂ A. The index of the subgroup is not greater

than (mk)
2n

, and the characteristicsχ1, . . . , χn are equivalent to the characteristics
κ1, . . . , κn, respectively.�

Example 1 shows in particular that the quotient divisible group dual to an almost
completely decomposable group is not necessarily decomposed into a direct sum of
subgroups. But nevertheless the following corollary of Theorem 9 takes place.

Corollary 10 Every almost completely decomposable group contains a basis such
that the dual quotient divisible group with respect to it is decomposed into a direct sum
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of quotient divisible groups of rank1.�

7 Dualization of a Lemma by L.Fuchs

Lemma by L.Fuchs [18] gives a sufficient condition of indecomposability for a torsion-
free finite-rank group, see Lemma 88.3 in [13]. The following theoremis a dualization
of this lemma.

Theorem 11 Let a setx0
1, . . . , x

0
n of elements of a finitely presented̂Z-module

determine a triple with a torsion free groupA. If:

(i) The setx0
1, . . . , x

0
n is almost linearly independent,

(ii) The co-characteristicsχ1, . . . , χn of x0
1, . . . , x

0
n belong to pairwise incomparable

types,

(iii)
〈
x0

1

〉bZ ∩
〈
x0

i

〉 bZ 6= 0 for eachi = 2, . . . , n,

then the groupA is not decomposable into a direct sum of nonzero subgroups.
Proof We show first that the setx0

1, . . . , x
0
n is linearly independent overZ. Let

m1x
0
1 + . . . + mnx0

n = 0, m1, . . . , mn ∈ Z. If, say,m1 6= 0, then the elementm1x
0
1 is

periodic because of the first condition. Therefore[χ1] = 0 and this is a contradiction
with the second condition. Thusm1 = . . . = mn = 0. By Section 4 ”Duality”, we
obtain thatx∗

1 = x0
1, . . . , x

∗

n = x0
n andA∗ =

〈
x0

1, . . . , x
0
n

〉
∗
.

Let x ∈ A∗ be an arbitrary element of infinite order andχ be its co-characteristic
in
〈
x0

1, . . . , x
0
n

〉 bZ . Thenmx = m1x
0
1 + . . . + mnx0

n for some integer coefficients with
m 6= 0. Multiplying the equality by an arbitrary universal numberα of characteristic
χ, we obtainm1αx0

1 + . . . + mnαx0
n = 0. Since all the summands must be periodic,

we obtain that[χ] ≥ [χi] for every i with mi 6= 0. Thus the co-type ofx is greater
than or equal to at least one of the co-types of elementsx0

1, . . . , x
0
n . Suppose now that

[χ] ≤ [χj ] for somej, then[χi] ≤ [χ] ≤ [χj ] , and by the second condition we obtain
i = j and[χ] = [χj ] . In this case, only one coefficientmj is different from zero in the
equalitymx = m1x

0
1 + . . .+mnx0

n on the right. Hencemx = mjx
0
j for some non-zero

integersm andmj . The torsion elements ofA∗ have the zero co-type. Thus it is proved
that if cotype (x) ≤ cotype

(
x0

i

)
for x ∈ A∗ and somei = 1, . . . , n, then the elements

x andx0
i are colinear orx is torsion.

Let us suppose now that the torsion free groupA with the basisx1, . . . , xn is decom-
posed into a direct sum of non-zero subgroups. Then there exists a basisy1, . . . , yn ∈
〈x1, . . . , xn〉 ⊂ A such that〈y1, . . . , yk〉∗ ⊕ 〈yk+1, . . . , yn〉∗ = A, 0 < k < n. Moreover


y1

· · ·

yn


 = S




x1

· · ·

xn


 , whereS is a nonsingular matrix with integer entries. Apply-

ing Theorem 3, we obtain thatA∗ = A∗

X ⊂ A∗

Y and(x∗

1, . . . , x∗

n) = (y∗

1 , . . . , y∗

n) S.
By Theorem 2,A∗

Y = B ⊕ C, whereB =
〈
y0

1, . . . , y
0
k

〉
∗

in
〈
y0

1, . . . , y
0
k

〉bZ andC =〈
y0

k+1, . . . , y
0
n

〉
∗

in
〈
y0

k+1, . . . , y
0
n

〉bZ . By the projectionsA∗

Y → B and A∗

Y → C,
the co-characteristics of elements are decreasing as it takes place for any homomor-
phism of quotient divisible groups. SinceA∗ and A∗

Y are quasi-equal, the sets of
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their co-types coincide. Therefore one of the projections of the elementx∗

i must have
the co-type[χi] and the other projection has the co-type 0 for everyi = 1, . . . , n.
Thus mx∗

i ∈ B or mx∗

i ∈ C for a suitable integerm 6= 0. On the other hand,
x0

i = s1iy
0
1 + . . . + sniy

0
n, whereski are the entries of the matrixS. If mx0

i ∈ B,
then necessarilysk+1i = . . . = sni = 0, hencex∗

i = x0
i = s1iy

0
1 + . . . + skiy

0
k ∈ B. We

obtainx∗

i = x0
i ∈ B or x∗

i = x0
i ∈ C for everyi = 1, ..., n. Let x0

1 ∈ B andx0
j ∈ C for

somej. Then for some element 06= t ∈
〈
x0

1

〉 bZ ∩
〈
x0

j

〉bZ , we obtaint ∈ B ∩ C and it is
a contradiction. Thus the groupA is indecomposable.�

8 Completely decomposable homogeneous groups

Theorem 12 Let y0
1, . . . , y

0
n be a linearly independent over̂Z set of elements of a

finitely presented̂Z-module, such that the co-characteristicsχ1, . . . , χn of y0
1, . . . , y

0
n

are equalχ1 = . . . = χn = χ. Let a set of elementsx0
1, . . . , x

0
n of the same module

be defined by a matrix equality
(
x0

1, . . . , x
0
n

)
=
(
y0

1, . . . , y
0
n

)
S, whereS is an integer

matrix of dimensionn × n with detS = ±1. Then the triple corresponding to the set
x0

1, . . . , x
0
n has the following properties:

(i) The setx0
1, . . . , x

0
n is linearly independent over̂Z and all the co-characteristics of

the elements are equal toχ,

(ii) A = x1Rχ ⊕ . . . ⊕ xnRχ,

(iii) A∗ = x∗

1Rχ ⊕ . . . ⊕ x∗

nRχ.

Proof The moduleM =
〈
y0

1, . . . , y
0
n

〉bZ = y0
1Zχ ⊕ . . . ⊕ y0

nZχ is a free module
over the ringZχ as well. The correspondencey0

1 7−→ x0
1, . . . , y

0
n 7−→ x0

n determines an
automorphism of theZχ-moduleM which maps the free basisy0

1, . . . , y
0
n to the free

basisx0
1, . . . , x

0
n. It proves the first statement of the theorem. Applying Theorem 7, we

finish the proof.�
Corollary 13 Let a quotient divisible groupB = y1R

χ ⊕ . . . ⊕ ynRχ be a direct
sum of copies isomorphic toRχ. For every integer matrixS of dimensionn × n with
detS = ±1, the setx1, . . . , xn ∈ B, defined by the matrix equality(x1, . . . , xn) =
(y1, . . . , yn) S, is a basis of the quotient divisible groupB as well. The dual toB
torsion free groupB∗ is the same considering it with respect to each of two bases.
Moreover, the following two decompositions ofB∗ take place with respect to the dual
bases:B∗ = y∗

1Rχ ⊕ . . . ⊕ y∗

nRχ = x∗

1Rχ ⊕ . . . ⊕ x∗

nRχ.�
Theorem 12 would not be true if we replace the equality of the co-characteristics

χ1 = . . . = χn = χ by the equivalence of the co-characteristicsχ1 ∼ . . . ∼ χn ∼ χ. It
is shown in the following example.

Example 2 First we define a triple. We consider three characteristics
χ1 = (0, 1, 0, 0, ...) , χ2 = (1, 0, 0, 0, ...) , χ3 = χ1 + χ2 = (1, 1, 0, 0, ...) and a fi-
nitely presented̂Z-moduleZ6 =

{
0, 1, 2, 3, 4, 5

}
. Let y0

1 = 2 andy0
2 = 3. Then

cochar
(
y0

1

)
= χ1 and cochar

(
y0

2

)
= χ2. According to Section 4 “Duality”,y∗

1 =

2 + d1, y
∗

2 = 3 + d2, y
∗

1Rχ1 =
〈
2
〉
⊕ d1Q, y∗

2Rχ2 =
〈
3
〉
⊕ d2Q. Since the sety0

1, y
0
2 is
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linearly independent over̂Z, we have the following direct decompositions according
to Theorem 7:

(i) A∗ = y∗

1Rχ1 ⊕ y∗

2Rχ2 = d1Q ⊕ d2Q ⊕ Z6,

(ii) A = y1Rχ1 ⊕ y2Rχ2. The rank-1 groupy1Rχ1 contains an elementv1 = 1
3y1 and

y1Rχ1 = 〈v1〉 . Analogously,y2Rχ2 = 〈v2〉 , wherev2 = 1
2y2. ThusA = v1Z⊕v2Z

is a free group of rank 2 and the fixed basis isy1 = 3v1, y2 = 2v2.

We consider now another triple which is corresponding to the setx0
1, x

0
2 defined

by the matrix equality
(
x0

1, x
0
2

)
=
(
y0

1, y
0
2

)
(

1 2
2 3

)
. We note immediately that the

groupsA andA∗ of the new triple are the same, because the matrix is invertible. Only
the pair of mutually dual bases is different. Namely, we havex0

1 = 2, x0
2 = 1, the

co-characteristics ofx0
1 andx0

2 areχ1 andχ3, respectively. Theorem 7 can not be used,
because the setx0

1, x
0
2 is not linearly independent over̂Z, it is only almost linearly

independent over̂Z. And we can not obtain a direct decomposition ”along” the bases
x1, x2 andx∗

1, x
∗

2. According to Theorem 3,x∗

1 = 2+(d1 + 2d2) , x∗

2 = 1+(2d1 + 3d2)
and x1 = −9v1 + 4v2, x2 = 6v1 − 2v2. The quotient divisible groupA∗ contains
the quotient divisible rank-1 subgroupsx∗

1Rχ1 =
〈
2
〉

+ (d1 + 2d2)Q andx∗

2R
χ3 =〈

1
〉
+ (2d1 + 3d2) Q. Moreover,A∗ = x∗

1Rχ1 + x∗

2Rχ3, butx∗

1Rχ1 ∩ x∗

2Rχ3 =
〈
2
〉

and
the sum is not direct. On the other hand,〈x1〉∗ = x1Z ⊂ A, 〈x2〉∗ = x2Rχ2 ⊂ A. Of
course,〈x1〉∗ ∩ 〈x2〉∗ = 0, but the direct sum〈x1〉∗ ⊕ 〈x2〉∗ doesn’t coincide with the
groupA, it is of the index 3.�

9 Lattice of admissible almost completely decomposable
groups

Definition. An elementt of an arbitrary group is calledadmissiblewith respect to a
characteristicχ if it is torsion and thep-component of the characteristicχ is equal to
zero for every prime divisorp of the order of the elementt.�

The next proposition follows easily from Lemma 1.
Proposition 14LetxRχ be a rank-1 quotient divisible group of a co-characteristic

χ with a basisx and〈t〉 be a cyclic group. The groupxRχ ⊕ 〈t〉 is quotient divisible if
and only if the elementt is admissible with respect to the characteristicχ. Moreover, if
xRχ ⊕ 〈t〉 is quotient divisible, then its rank is1 and the elementx + t is its basis.�

We fix now an arbitrary sequence of characteristicsΞ = (χ1, . . . , χn) and a basis
x1, . . . , xn of a vector spaceV over Q. The groupB = x1Rχ1 ⊕ . . . ⊕ xnRχn

⊂ V
is completely decomposable torsion free. The groupB∗ = x∗

1R
χ1 ⊕ . . . ⊕ x∗

nRχn is
dual toB quotient divisible. In this section, we consider some finite extensionsA of
the groupB with the same common fixed basisx1, . . . , xn for all them. Every such
groupA determines a pair: the dual quotient divisible groupA∗ and the dual basis (to
the fixed basisx1, . . . , xn). For different groupsA those dual bases are different, the
dual groupsA∗ are different of course as well, though they all are quasi-equal. Thus
we obtain a fan of different quotient divisible groups and their bases. Connections
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between them are described in Theorem 15. The different dual basesdiffer by torsion
elements. So the sequences of the torsion elements are terms of this description.

Definition. A sequence of elementsT = (t1, . . . , tn) of a groupGT = 〈t1, . . . , tn〉
is calledadmissiblewith respect to the sequence of characteristicsΞ = (χ1, . . . , χn) if
each elementti is admissible with respect to the characteristicχi, i = 1, . . . , n.�

Theorem 15 Let B = x1Rχ1 ⊕ . . . ⊕ xnRχn
andB∗ = x∗

1R
χ1 ⊕ . . . ⊕ x∗

nRχn be
mutually dual groups as it is defined above.
For every admissible sequence of torsion elementsT = (t1, . . . , tn) with respect to the
sequence of the characteristicsΞ = (χ1, . . . , χn) the following statements take place:

(i) The groupB∗ ⊕ GT is quotient divisible. Moreover, it is a direct sum of quotient
divisible rank-1 subgroups. The setx∗

1 + t1, . . . , x
∗

n + tn is a basis of the group
B∗ ⊕ GT .

(ii) The dual toB∗ ⊕ GT torsion free groupAT with respect to the basisx∗

1 +
t1, . . . , x

∗

n+tn is an almost completely decomposable group with the basisx1, . . . , xn.
Moreover,B ⊂ AT andAT /B ∼= GT . Thus every admissible sequenceT gives
an almost completely decomposable groupAT .

(iii) Let AS be an almost completely decompsable group corresponding to another
admissible sequenceS = (s1, . . . , sn) for the same sequence of the characteristics
Ξ = (χ1, . . . , χn).
The inclusionAT ⊂ AS takes place if and only if there exists a homomorphism
η : GS → GT such thatη (s1) = t1, . . . , η (sn) = tn.

Proof The first statement of the theorem is a direct consequence of definitionsand
Lemma 1.

The Z-adic completionM of the groupB∗ ⊕ GT is of the formM = B0 ⊕ GT ,
whereB0 = x0

1Zχ1 ⊕ . . .⊕ x0
nZχn

. The set of elementsx0
1 + t1, . . . , x

0
n + tn generates

the moduleM over the ringẐ and it is a part of the triple corresponding to the quotient
divisible groupB∗⊕GT with the basisx∗

1 +t1, . . . , x
∗

n+tn. The setx0
1+t1, . . . , x

0
n+tn

is not necessarily linearly independent overẐ, for examplet1 can be equal tot2, but it
is surely almost linearly independent overẐ.

The groupAT is generated inV by all elements of the form

f
(
x0

1 + t1
)
x1 + . . . + f

(
x0

n + tn
)
xn, (9.1)

wheref runs through the group
HombZ (B0 ⊕ GT , Q/Z

)
= HombZ (B0, Q/Z

)
⊕ HombZ (GT , Q/Z) . If the function

f is running only through the first direct summandHombZ (B0, Q/Z
)
, then the ele-

ments (9.1) generate in total the groupB = x1Rχ1 ⊕ . . . ⊕ xnRχn
. Thus the group

AT is generated byB and the finite set of elements (9.1), wheref is running through
HombZ (GT , Q/Z) .

We denoteG∗

T = HombZ (GT , Q/Z) and identifyG∗∗

T = GT . If t ∈ GT andf ∈
G∗

T , thent : G∗

T → Q/Z is defined ast (f) = f (t) . It is easy to see that the functionθ :
G∗

T → V/B, whereθ (f) = (f (t1)x1 + . . . + f (tn)xn)+B, is a homomorphism. Let
us prove that it is injective. Supposeθ (f) = 0. It means thatf (t1)x1+. . .+f (tn) xn ∈
B. Let f (ti) = ki

mi
+ Z, gcd(ki, mi) = 1. Every prime divisorp of mi is a divisor of
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the order of the elementti. Sinceti is admissible with respect toχi, thep-component
of χi is zero and hence1

p
xi /∈ B. This contradiction shows thatmi = 1 for everyi and

thereforef = 0.
Identifying along the monomorphismθ, we obtainG∗

T ⊂ V/B. The preimage of
G∗

T at the natural homomorphismV → V/B is exactly the groupAT . ThusB ⊂ AT

andAT /B = G∗

T . The observationG∗

T
∼= GT completes the second statement of the

theorem.
Let S = (s1, . . . , sn) be another admissible sequence which similarly determines a

groupAS ⊂ V. It is clear thatAT ⊂ AS ⇔ AT /B ⊂ AS/B. Let AT ⊂ AS . Taking into
account all the identifications, the embeddingid : AT /B → AS/B can be described in
the following way.

Let f ∈ AT /B = G∗

T = HombZ (GT , Q/Z) . Then id (f) is such a homomor-
phismg ∈ AS/B = G∗

S = HombZ (GS , Q/Z) that(f (t1)x1 + . . . + f (tn) xn) + B =
(g (s1)x1 + . . . + g (sn)xn)+B, that is(f (t1) − g (s1))x1+. . .+(f (tn) − g (sn))xn ∈
B. Similarly to the injectivity ofθ, it follows thatf (t1) = g (s1) , . . . , f (tn) = g (sn) .
Sinceid : G∗

T → G∗

S is injective, the dual homomorphismid∗ : G∗∗

S → G∗∗

T is sur-
jective. Hereid∗ (h) = h ◦ id for an elementh : G∗

S → Q/Z of the groupG∗∗

S .
Consideringsi ∈ GS = G∗∗

S , we have(id∗ (si)) (f) = si (id (f)) = si (g) = g (si) =
f (ti) = ti (f) for everyf ∈ G∗

T . Thusid∗ (si) = ti for all i andid∗ : GS → GT is the
desired homomorphism.

Conversely, ifη : GS → GT is a homomorphism such thatη (s1) = t1, . . . , η (sn) =
tn, then every generator of the formf (t1)x1 + . . . + f (tn) xn of the groupAT can be
represented in the form(fη) (s1)x1 + . . . + (fη) (sn) xn as a generator of the group
AS . ThereforeAT ⊂ AS .�

This theorem together with Theorems 2 and 11 leads to the following corollary.
Corollary 16 Let a sequence of elementsT = (t1, . . . , tn) be admissible with re-

spect to a sequence of characteristicsΞ = (χ1, . . . , χn) . Then the following statements
hold for the groupAT and the basisx1, . . . xn defined in Theorem 15:

(i) AT = 〈x1, . . . , xk〉∗⊕〈xk+1, . . . , xn〉∗ if and only ifGT = 〈t1, . . . , tk〉⊕〈tk+1, . . . , tn〉 .

(ii) The groupAT is indecomposable if the characteristicsχ1, . . . , χn belong to pair-
wise incomparable types and the intersections of the cyclic group〈t1〉 with each
of the cyclic groups〈t2〉 , . . . , 〈tn〉 are different from zero.�

For every two admissible sequencesT = (t1, . . . , tn) andS = (s1, . . . , sn) with
respect to the same sequence of characteristicsΞ = (χ1, . . . , χn) , we define:

• T ≤ S if there exists a homomorphismη : GS → GT such thatη (s1) =
t1, . . . , η (sn) = tn.

• T ∼ S if there exists an isomorphismη : GS → GT such thatη (s1) = t1, . . . , η (sn) =
tn.

The second relation is an equivalence. The first relation is an order on the set of
equivalence classes of admissible sequences. Thus we obtain a lattice ofadmissible
sequencesLΞ. We call a group of the formAT asadmissiblewith respect toΞ.
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Corollary 17 LetB = x1Rχ1 ⊕ . . .⊕xnRχn
be a completely decomposable torsion

free group. The lattice by inclusion of the admissible extensions ofB is isomorphic to
the latticeLΞ.�

The restriction of admissibility is not very hard as it is shown in the following
theorem.

Theorem 18 For every almost completely decomposable groupA there exist a
sequence of characteristicsΞ = (χ1, . . . , χn) and an admissible sequence of elements
T = (t1, . . . , tn) such thatA = AT .

Proof The groupA contains a completely decomposable subgroupB = x1Rκ1 ⊕
. . . ⊕ xnRκn

of finite index. LetP = {p1, . . . , pm} be the set of all prime divisors of
this index. Replacing the finitep-components of the characteristicsκ1, . . . , κn by zeros
for all p ∈ P, we obtain a new sequence of characteristicsχ1 ≤ κ1, . . . , χn ≤ κn of the
same types. ThenA is a finite extension of the groupB1 = x1Rχ1 ⊕ . . . ⊕ xnRχn

and
the set of prime divisors of the index is the sameP = {p1, . . . , pm} . Now it is easy to
see from Theorem 9 that there exists an admissible sequenceT for Ξ = (χ1, . . . , χn)
such thatA = AT .�

10 The group of A.L.S. Corner

10.1 Partitions

We consider different prime numbersq1, . . . , qn−k, where 0< k ≤ n, and a group
G = 〈t1〉 ⊕ . . . ⊕ 〈tn−k〉 , where the order ofti is qi for i = 1, . . . , n − k. The groupG
is cyclic itself of the orderm = q1 · . . . · qn−k, G = 〈t〉 , wheret = t1 + . . . + tn−k.

Since the greatest common divisor of the integersm
q1

, m
q2

, . . . , m
qn−k

is equal to 1,
there exist integersr1, r2, . . . , rn−k such thatr1

m
q1

+ r2
m
q2

+ . . . + rn−k
m

qn−k
= 1. We

are interested in the last equality just as in the sum of the integers which is equal to 1.

m1 + m2 + . . . + mn−k = 1 (10.1)

The numbersm1, m2, . . . , mn−k have the following property

miti = ti for all i andmitj = 0 for i 6= j.

A sequence of natural numbers(P1, . . . , Pk−1) satisfying 0≤ P1 ≤ . . . ≤ Pk−1 ≤
n − k, is called asubdivisionof the interval[1, n − k] into k parts byk − 1 parti-
tions P1, . . . , Pk−1. We define the following four sequences for a given subdivision
(P1, . . . , Pk−1).

(i) The sequence of non-negative integers:

n1 = P1, . . . , ni = Pi − Pi−1, . . . , nk = (n− k) − Pk−1.

It is easy to see thatn−k = n1+. . .+nk and the number of different subdivisions
is (n−1

k−1). It is equal to the number of different representations ofn − k as a sum
of k non-negative integersn − k = n1 + . . . + nk.
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(ii) The sequence of integers obtained from (10.1):

s1 = m1+. . .+mP1, . . . , si = mPi−1+1+. . .+mPi
, . . . , sk = mPk−1+1+. . .+mn−k.

Note that ifni = 0 then the sumsi is empty and we definesi = 0. Obviously,
s1 + . . . + sk = 1.

(iii) The sequence of elements of the groupG:

g1 = t1 + . . . + tP1 , . . . , gi = tPi−1+1 + . . . + tPi
, . . . , gk = tPk−1+1 + . . . + tn−k.

If ni = 0 we defineti = 0. Obviously,g1 + . . . + gk = t.

(iv) The sequence of subsets of a linearly independent setX = {x1, . . . , xn−k}, where
x1, . . . , xn−k are vectors of a rational vector space:

X1 = {xj | j ≤ P1}, . . . , Xi = {xj | Pi−1 < j ≤ Pi}, . . . , Xk = {xj | Pk−1 < j ≤ n−k}.

If ni = 0 thenXi = ∅.

The following properties take place for a subdivision(P1, . . . , Pk−1):

(i) g1 = s1t, . . . , gk = skt,

(ii) G = 〈g1〉 ⊕ . . . ⊕ 〈gk〉 ,

(iii) the setXi consists ofni elements,X = {x1, . . . , xn−k} = X1 ∪ . . . ∪ Xk and
Xi ∩ Xj = ∅ for i 6= j,

(iv) 〈gi〉 ∩ 〈tj〉 6= 0 ⇐⇒ xj ∈ Xi.

10.2 The Corner’s group

Now we are able to define the Corner’s group. Besides the set of the prime numbers
q1, . . . , qn−k, we fix prime numbersp, p1, . . . , pn−k such that all they are different. We
also definen − k + 1 characteristics in the following way. Thep-component of a
characteristicχ is ∞ and all other components are equal to 0. Thepi-component of a
characteristicχi is ∞ and all other components are equal to 0, i = 1, . . . , n − k. Then
Rχ = Q(p), Rχi

= Q(pi) andRχ = Qp, R
χi = Qpi

.
The groupB =

(
u1Q

(p) ⊕ . . . ⊕ ukQ(p)
)
⊕
(
x1Q

(p1) ⊕ . . . ⊕ xn−kQ(pn−k)
)

is tor-
sion free completely decomposable with a basisu1, . . . , uk, x1, . . . , xn−k of rankn, we
keep here the original notation of the book [13]. The dual toB quotient divisible group
is of the formB∗ = (u∗

1Qp ⊕ . . . ⊕ u∗

kQp) ⊕
(
x∗

1Qp1 ⊕ . . . ⊕ x∗

n−kQpn−k

)
. Thus the

sequence of characteristics isΞ = (χ, . . . , χ, χ1, . . . , χn−k) . The sequence of torsion
elementsT = (t, 0, . . . , 0, t1, . . . , tn−k) is admissible with respect toΞ.

We can apply Theorem 15 and define now the group of A.L.S.Corner as C =
AT . That is the torsion free group dual to the groupB∗ ⊕ G with respect to the ba-
sis u∗

1 + t, u∗

2, . . . , u
∗

k, x∗

1 + t1, . . . , x
∗

n−k + tn−k. The basis ofC dual to this one is
u1, u2, . . . , uk,x1, . . . , xn−k.

First of all, we can see immediately by Corollary 16 thatAT = 〈u1, x1, . . . , xn−k〉∗⊕
〈u2〉∗ ⊕ 〈u3〉∗ . . . ⊕ 〈uk〉∗ is the decomposition of the Corner’s group into a direct sum
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of k indecomposable groups, because the types[χ] , [χ1] , . . . , [χn−k] are pairwise in-
comparable.

For an arbitrary representationn − k = n1 + . . . + nk, we change only the part
u1, u2, . . . , uk of the common basisu1, u2, . . . , uk, x1, . . . , xn−k of the groupsB andC

with help of the matrixL =




s1 s2 s3 . . . sk

−1 1 0 . . . 0
· · · · · · · · · · · · · · ·

−1 0 0 . . . 1


 such that




u1

· · ·

uk


 = L




v1

· · ·

vk


 . Thus we obtain a new common basisv1, . . . , vk, x1, . . . , xn−k of the groups

B andC. Since detL = s1+ . . .+sk = 1, it follows from Corollary 6 that the dual toB
andC quotient divisible groups are the same groupsB∗ andC∗ = B∗⊕G, respectively.
Due to Theorem 3, the dual tov1, . . . , vk, x1, . . . , xn−k bases for these two groups are
v∗1B , . . . , v∗kB , x∗

1, . . . , x
∗

n−k in B∗ andv∗1C , . . . , v∗kC , x∗

1+t1, . . . , x
∗

n−k+tn−k in B∗⊕G,
where

(v∗1B, v∗2B , . . . , v∗kB) = (u∗

1, u
∗

2, . . . , u
∗

k)L,

(v∗1C , . . . , v∗kC) = (u∗

1 + t, u∗

2, . . . , u
∗

k)L. (10.2)

Note that by Corollary 13 we have two direct decompositions

B =
(
v1Q

(p) ⊕ . . . ⊕ vkQ(p)
)
⊕
(
x1Q

(p1) ⊕ . . . ⊕ xn−kQ(pn−k)
)

andB∗ = (v∗1Qp ⊕ . . . ⊕ v∗kQp) ⊕
(
x∗

1Qp1 ⊕ . . . ⊕ x∗

n−kQpn−k

)
, we denote here and

further v∗1 = v∗1B, . . . , v∗k = v∗kB . It means that we can apply Theorem 15 once more
for the fixed common basisv1, . . . , vk, x1, . . . , xn−k of the groupsB and C. Sub-
tracting from the second equality (10.2) the first one, we obtain(v∗1C , . . . , v∗kC) −
(v∗1B, v∗2B , . . . , v∗kB) = (t, 0, . . . , 0) L = (s1t, s2t, . . . , skt) = (g1, . . . , gk) . Thus the se-
quence of torsion elements isS = (g1, . . . , gk, t1, . . . , tn−k) which is obviously admis-
sible with respect to the same sequence of characteristicsΞ = (χ, . . . , χ, χ1, . . . , χn−k) .
The groupC (with the basisv1, . . . , vk, x1, . . . , xn−k) is dual toB∗⊕G with respect to
the basisv∗1 +g1, v

∗

2 +g2, . . . , v
∗

k+gk, x∗

1+t1, . . . , x
∗

n−k+tn−k. In other words,C = AS

in terms of Theorem 15. Due to Corollary 16, the equalityG = 〈g1〉⊕ . . .⊕〈gk〉 implies
a direct decomposition

C = AS = 〈v1,X1〉∗ ⊕ 〈v2,X2〉∗ ⊕ . . . ⊕ 〈vk,Xk〉∗ . (10.3)

Every direct summand〈vi,Xi〉∗ is an extension of the group

Bi = viQ
(p)⊕

(
⊕

xj∈Xi

xjQ
(pj)

)
with help of the group〈gi〉 . Applying Corollary 16, we

can conclude that every group〈vi,Xi〉∗ is indecomposable, because〈gi〉 ∩ 〈tj〉 6= 0 for
all xj ∈ Xi and the types[χ] , [χ1] , . . . , [χn−k] are pairwise incomparable. The inde-
composable summands of the decomposition (10.3) have ranksn1+1, n2+1, . . . , nk +
1, respectively.



20 Alexander A. Fomin

Thus the Corner’s groupCnk = C = AT = AS depends on a pair 0< k ≤ n
of integers, it has rankn and the following property. For every decomposition of the
numbern = n1 + . . . + nk into a sum ofk positive integers, the groupCnk can be
decomposed into a direct sum ofk indecomposable subgroups of ranksn1, . . . , nk,
respectively.
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