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This paper investigates the properties of a special class of radicals defined

in the category of modules (T-radicals). In a sense the notion of a T-radical

synthesizes the definitions of an E-radical, appearing for the first time in [4],

and a T-module [3].

The first section is concerned with modules over some ring S, the second

one – both over the ring S and another ring R. It is suggested that R and S are

associative rings with unity, modules are unitary and, unless otherwise stated,

right. The category of right S-modules is designated mod-S. The word “group”

means the abelian group.

1. T(F )-radicals

In this section modules over S are dealt with. F designates some fixed left

S-module.

Definition 1.1. An S-module A is called a T(F )-module if A ⊗S F = 0.

The class of all T(F )-modules is denoted by T (F ).

The class T (F ) is closed under homomorphic images, extensions and direct

sums. In general, it is not closed under direct products.

Let us recall some definitions of the theory of radicals.

Definition 1.2. We will say that in the category mod-S a preradical λ is

defined, if to each S-module A is assigned its submodule λ(A), so that for any

S-homomorphism ϕ : A → B the relation ϕ(λ(A)) ⊂ λ(B) holds true.

Let λ be a preradical. A class of all S-modules A for which λ(A) = A is

called λ-radical.

Let us consider the following (possible) properties of a preradical λ:

R1. λ(λ(A)) = λ(A) for any A ∈ mod-S.

R1*. λ(A/λ(A)) = 0 for any A ∈ mod-S.

R2. λ(B) = B ∩ λ(A) for any A ∈ mod-S and B ⊂ A.

Definition 1.3. A preradical λ is called a radical if R1* holds. A radical

which satisfies R1 is said to be an idempotent radical. A preradical λ is called

a torsion if it satisfies R2 and R1*.

It is obvious that any torsion is an idempotent radical.
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WF (A) will designate the sum of all submodules B of A ∈ mod-S such that

B is a T(F )-module. WF is an idempotent radical, and T (F ) is its radical class

[2]. From here on we will call this idempotent radical simply “T(F )-radical”.

Definition 1.4. Let A be an S-module. The F -neutralizer of A is the set

of all elements a ∈ A such that for all f ∈ F we have a⊗S f = 0 in the tensor

product A⊗S F . This neutralizer is denoted by nF (A).

The neutralizer nF is a radical. The following equivalences are obvious:

WF (A) = A ⇐⇒ A ∈ T (F ) ⇐⇒ A⊗S F = 0 ⇐⇒ nF (A) = A.

In accordance with the definition of the T(F )-radical we immediately obtain

from [2] that WF is the largest idempotent radical λ such that λ(A) ⊂ nF (A)

for all A ∈ mod-S. Therefore the inclusion WF (A) ⊂ nF (A) is always the case.

The converse inclusion is not always valid.

Example 1.5. Let S be the ring of integers, F = Z(p) is a cyclic group of

a prime order, and A = Z is an infinite cyclic group. We see that nF (A) = pA,

but WF (A) = 0.

Proposition 1.6. Let F be a flat module. Then

(a) nF (A) = WF (A) for any A ∈ mod-S;

(b) WF is a torsion.

In order to prove (a) and (b), it is sufficient to use the characteristic property

of flat modules.

The neutralizer construction can be iterated transfinitely. Let A be a module

over S. We define n1
F (A) = nF (A); nβ

F (A) =
⋂

α<β nα
F (A) if β is a limit ordinal;

and nβ
F (A) = nF (nα

F (A)) if β = α+1 for some ordinal number α. The descending

sequence n1
F (A), n2

F (A), ... , nα
F (A), ... stabilizes and for some ordinal σ we have

nσ
F (A) = nσ+1

F (A). Let us introduce the notation n∞F (A) = nσ
F (A).

Proposition 1.7. For any S-module A the equality n∞F (A) = WF (A) holds.

Proof. We aim to prove the inclusion WF (A) ⊂ nα
F (A) by induction. For

α = 1 this inclusion has been proved previously. If β is a limit ordinal then,

since for all α < β the required inclusion is valid, the inclusion WF (A) ⊂ nβ
F (A)

is also valid. Assume now that for some ordinal number α we have β = α + 1.

The sequence of inclusions

WF (A) = WF (WF (A)) ⊂ WF (nα
F (A)) ⊂ nF (nα

F (A)) = nβ
F (A)

completes the induction. For α = σ we obtain WF (A) ⊂ nσ
F (A) = n∞F (A).
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Furthermore, the following equalities hold: nF (nσ
F (A)) = nσ+1

F (A) = nσ
F (A).

Hence nσ
F (A) = n∞F (A) ∈ T (F ), which implies that n∞F (A) ⊂ WF (A). This

completes the proof of the proposition.

To conclude the section, we will consider the special case when S is the

ring of integers Z; in this situation S-modules are simply abelian groups. Let

us describe all the radicals WF . The torsion subgroup of a group A will be

denoted by t(A), p-component of A – by tp(A) or Ap. Note that all torsions λ

in the category of abelian groups can be divided into two types: in the first type

are those for which λ(Z) = 0 (let us call such torsions proper), in the second

type is only one torsion λ(A) = A for all groups A. All proper torsions in the

category of abelian groups have the form λ(A) =
⊕

p∈P Ap, where P is some

subset (not necessarily non-empty) of the set of all primes. Conversely, any

preradical λ defined in the way indicated above is a torsion in the category of

abelian groups.

Proposition 1.8. For any group F the class T (F ) is closed under pure

subgroups.

The proposition follows immediately from the properties of purely exact

sequences. Note that not all radical classes have the indicated closure property.

The following result is an immediate consequence of Proposition 1.8 and the

fact that for an arbitrary idempotent radical λ the subgroup λ(A) of a group A

is always pure [1].

Proposition 1.9. If F = G ⊕ H, then for any group A the equalities

WF (A) = WG(WH(A)) = WH(WG(A)) hold.

Let F be a non-periodic abelian group. All prime numbers p can be divided

into three disjoint sets:

L – those p, for which the group F is p-divisible;

M – those p, for which the group F is not p-divisible, and the factor group

F/ t(F ) is;

N – those p, for which the factor group F/ t(F ) is not p-divisible.

Then for any abelian group A we have

WF (A) =
(⊕

p∈L

Ap

)
⊕

(⊕
p∈M

Dp

)
,

where Dp denotes the largest divisible p-subgroup of A. We will point out

two important particular cases: if F = Q is an additive group of all rational

numbers, then WF = t; if F = Q(p), then WF = tp.

3



Now let F be an arbitrary torsion group, F =
⊕

p Fp. It is clear that

T (F ) =
⋂

p T (Fp). The set of all prime numbers p can be divided into three

disjoint sets:

L – those p, for which Fp = 0;

M – those p, for which Fp is a non-zero divisible group;

N – those p, for which the group Fp is not divisible.

It is easy to see that the group A is contained in the class T (F ) if and only

if the factor group A/ t(A) is p-divisible for all p ∈ M , and the group A is

p-divisible for all p ∈ N . In this case WF (A) is the largest subgroup of A with

these properties (it can be found as a sum of all such subgroups). Note that if

F is a torsion group, then all divisible groups are T(F )-groups.

We have obtained a complete description of T(F )-radicals in the category

of abelian groups. It is quite easy to see that this class of radicals forms in fact

a set. We will see below that this set is closed under intersections.

Suppose we have a direct decomposition F =
⊕

i∈I Fi. In this case it is

obvious that T (F ) =
⋂

i∈I T (Fi). For the sake of convenience T(Fi)-radicals

will be denoted simply by Wi. The following theorem is valid.

Theorem 1.10. For an arbitrary decomposition F =
⊕

i∈I Fi and for any

group A the equality WF (A) =
⋂

i∈I Wi(A) holds.

Let us consider when the T(F )-radical is a torsion. It is clear that, if nF is

an idempotent radical, then for any S-module A the equality n2
F (A) = nF (A) is

valid, therefore n∞F (A) = nF (A). Hence (see Proposition 1.7) the T(F )-radical

coincides with the F -neutralizer. So, if nF is a torsion, then WF is a torsion

too. It is easy to verify that the following proposition holds.

Proposition 1.11. The following conditions are equivalent:

(a) nF (A) = A for any abelian group A;

(b) WF (A) = A for any abelian group A;

(c) F = 0.

Thus we know when nF and/or WF are “non-proper” torsions. The following

theorem shows when the F -neutralizer and the T(F )-radical are proper torsions.

Theorem 1.12. Let S be the ring of integers, F – a group. The following

conditions are equivalent:

(a) nF is a proper torsion;

(b) WF is a proper torsion;

(c) the group F is non-periodic, and for any prime p, such that the factor group

F/ t(F ) is p-divisible, the group F is also p-divisible.
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Proposition 1.11 and Theorem 1.12 show that if S is the ring of integers,

then the conditions “WF is a torsion” and “nF is a torsion” are equivalent. Let

us make sure that in general this is not the case.

Example 1.13. Let S be the ring of residues modulo pk (where k > 1),

and F = Z(p). Then for any S-module A we have WF (A) = 0, hence WF is a

torsion. But nF (A) = pA, that is, the radical nF is not even idempotent.

2. T-radicals

In this section we deal with two rings: S and R. Suppose that a ring

homomorphism e : S → R is given. Any R-module A can be considered as an

attracting S-module if we define as = ae(s) for all a ∈ A, s ∈ S. It is easy to

see that R and e(S) are S-S-bimodules. Throughout this section it is agreed

that F = R/e(S).

For any module A ∈ mod-R we can consider the canonical epimorphism

h : A⊗S R → A⊗R R.

Definition 2.1. An R-module A is called a T-module with respect to the

ring homomorphism e if the epimorphism h is an isomorphism.

We will briefly say “T-module”. A class of all T-modules over R is denoted

by T .

Definition 2.2. Let A be an R-module. The symbol W(A) will designate

the sum of all submodules B of A ∈ mod-R such that B ∈ T . The submodule

W(A) is called a T-radical of A.

The class T contains a module AR if and only if A⊗S F = 0 [3]. Hence the

elements of the class T are all those R-modules which, if treated as attracting

S-modules, are contained in the class T (F ); alternatively, T = T (F )∩mod-R.

The latter equality and the definitions of WF (A) and W(A) imply the inclusion

W(A) ⊂ WF (A).

Theorem 2.3. For any ordinal number α the module nα
F (A) is a submodule

of an R-module A.

Proof. Let us proceed by induction on α.

Base of induction (α = 1). Symbols r, r1, etc. will be used to designate

elements of the left module F = R/e(S). Let us fix an arbitrary element r1 ∈ R

and define a mapping f : A × R → A ⊗S F by f(a, r) = ar ⊗S r1 − a ⊗S rr1.
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The equalities

f(as, r) = (as)r ⊗S r1 − as⊗S rr1 = asr ⊗S r1 − a⊗S srr1 = f(a, sr)

show the mapping f to be S-balanced. Hence there exists a homomorphism of

abelian groups ϕ : A⊗S R → A⊗S F such that ϕ(a⊗S r) = ar⊗S r1− a⊗S rr1.

The exact sequence of S-modules

0 −→ e(S)
α−→ R

β−→ F −→ 0

yields the exact sequence of abelian groups

A⊗S e(S)
α−→ A⊗S R

β−→ A⊗S F −→ 0.

For all a ∈ A, s ∈ S we obtain

ϕ(a⊗S e(s)) = as⊗S r1 − a⊗S sr1 = a⊗S sr1 − a⊗S sr1 = 0.

Hence Im α ⊂ Ker ϕ, and this is equivalent to the relation Ker β ⊂ Ker ϕ. It

follows that there exists a group homomorphism ψ : A ⊗S F → A ⊗S F such

that ψ(a⊗S r) = ar ⊗S r1 − a⊗S rr1. For arbitrary b ∈ nF (A), r ∈ R we have

br ⊗S r1 = br ⊗S r1 − b⊗S rr1 = ψ(b⊗S r) = ψ(0) = 0.

Since the foregoing reasoning is valid for an arbitrary element r1 ∈ R, it follows

that br ∈ nF (A). Thus nF (A) is a submodule of AR.

Induction step. If β is a limit ordinal, and for all α < β the module nα
F (A) is

a submodule of AR, then it is clear that this statement also holds for nβ
F (A). If

β = α + 1, we see that nα
F (A) is a submodule of AR, and nβ

F (A) = nF (nα
F (A)) is

a submodule of nα
F (A) ∈ mod-R. Hence nβ

F (A) is also a submodule of AR.

Proposition 1.7 and Theorem 2.3 produce

Corollary. For any R-module A the equality WF (A) = W(A) is valid.

This corollary leads us to the following result: the value of the radical W(A)

does not depend on the way we define an R-module structure on A ∈ mod-S

(provided that this structure agrees with the existing S-module one). Moreover,

we can extend the domain of the T-radical from mod-R to mod-S, identifying

WF and W.

Now it will be shown that if we have a ring S and an S-S-bimodule F , then

there exist a ring R and a homomorphism e : S → R such that the bimodule

R/e(S) is isomorphic to F .
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Let us define R as a set of matrices:

R =

{(
s f

0 s

) ∣∣∣∣∣ s ∈ S, f ∈ F

}
.

It is easy to verify that with respect to the usual operations of addition and

multiplication R forms an associative ring with unity. Define a homomorphism

e as follows:

e(s) =

(
s 0

0 s

)
.

Then it is clear that R/e(S) ∼= F . Note that an arbitrary S-module A can be

considered as an R-module if we define

a

(
s f

0 s

)
= as

for all a ∈ A. Then as = ae(s), which agrees with the process of defining the

attracting S-module structure on R-modules.

Since modules over commutative rings can be considered as bimodules, we

obtain the following result: if S is a commutative ring, then any T(F )-radical

has the form of a T-radical (if the latter is treated as the one defined in the

category of S-modules) for some ring R and some embedding e : S → R.
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