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Аннотация
This paper presents necessary and sufficient conditions under which

isomorphism of endomorphism rings of additive groups of arbitrary
associative rings with 1 implies isomorphism of these rings. For a
certain class of abelian groups, we present a criterion which shows
when isomorphism of their endomorphism rings implies isomorphism
of these groups. We demonstrate necessary and sufficient conditions
under which an arbitrary ring is the endomorphism ring of an abelian
group. This solves Problem 84 in [4].

All the rings in this paper are associative with 1. If R is a ring (abelian
group), then E(R) is the endomorphism ring of its additive group, R+ is the
additive group of the ring R, and Rl is the subring of left multiplications of
the ring E(R).

According to L. Fuchs [4], if two abelian groups are isomorphic, their
endomorphism rings are also isomorphic. The inverse is not always true.
In particular, it follows that isomorphism of rings implies isomorphism of
endomorphism rings of their additive groups. So there arises a problem to
obtain necessary and sufficient conditions under which isomorphism of the
endomorphism rings of additive groups of the rings implies isomorphism of
these rings. This problem is solved in Theorem 2. Note that if R is a ring
with 1, the ring R is isomorphic to the ring of left multiplications Rl (Lemma
3.7.3 in [1]).

Lemma 1. Let in the diagram

R
α−−−→ Rl i−−−→ E(R)

β

y
yδ

yβ∗ (∗)

S
γ−−−→ Sl i

′
−−−→ E(S)
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α, γ be ring endomorphisms; i, i
′ be identical immersions of rings; then the

following are valid:
1) if β is an isomorphism of the rings R and S, then there exist isomorphisms
δ and β∗ such that the diagram (∗) becomes commutative;
2) if δ is an isomorphism of the rings Rl and Sl, then there exist isomorphisms
β and β∗ such that the diagram (∗) becomes commutative.

Proof. 1) Let β : R → S be a ring isomorphism, then the isomorphisms α,
β, γ induce an isomorphism δ : Rl → Sl such that δ = γβα−1. Then for each
r ∈ R we have: δ(α(r)) = δ(rl) = γ(β(α−1(rl))) = γ(β(r)) = γ(s) = sl and,
on the other hand, γ(β(r)) = γ(s) = sl, i.e., δα = γβ. The isomorphism of the
rings R and S implies isomorphism of their additive groups. The latter, in its
turn, implies the isomorphism β∗ : E(R) → E(S) such that β∗(ψ) = βψβ−1

for all ψ ∈ E(R) [4]. Let rl ∈ Rl and δ(rl) = sl, then γ(β(α−1(rl))) = sl,
β(α−1(rl)) = γ−1(sl), therefore, β(r) = s. Let us demonstrate that β∗|Rl = δ,
i.e., β∗(rl) = sl. Let x ∈ S, then (β∗(rl))(x) = β(rl(β−1(x))) = β(rl(y)) =
β(ry) = β(r)β(y) = sx = sl(x), i.e., β∗(rl) = sl. The equality β∗|Rl = δ
demonstrates that the right square of the diagram (∗) is commutative, then
the whole diagram (∗) is commutative.
2) Let δ : Rl → Sl be a ring isomorphism, then the isomorphisms α, δ, γ
induce an isomorphism β : R → S such that β = γ−1δα, what makes the
left square of the diagram (∗) commutative. Indeed, for each r ∈ R we have:
δ(α(r)) = δ(rl) = sl and, on the other hand, γ(β(r)) = γ(γ−1(δ(α(r)))) =
δ(α(r)) = sl, i.e., δα = γβ. Then there exists an isomorphism β∗ : E(R) →
E(S) such that β∗(ψ) = βψβ−1 for all ψ ∈ E(R). Let rl ∈ Rl and δ(rl) = sl,
then β(r) = γ−1(δ(α(r))) = γ−1(δ(rl)) = γ−1(sl) = s, i.e., β(r) = s. Let
us prove that β∗|Rl = δ, i.e., β∗(rl) = sl. Let x ∈ S, then (β∗(rl))(x) =
(βrlβ−1)(x) = ((γ−1δα)rl(γ−1δα)−1)(x) = (γ−1δαrlα−1δ−1γ)(x) =
(γ−1δαrlα−1δ−1)(xl) = (γ−1δαrlα−1)(yl) = (γ−1δαrl)(y) = (γ−1δα)(ry) =
(γ−1δα)(r)(γ−1δα)(y) = (γ−1δ)(rl)(γ−1δ)(yl) = (γ−1)(sl)(γ−1)(xl) = sx =
sl(x). Thus, the right square in the diagram (∗) is commutative, so the whole
diagram is also commutative.

Theorem 2. For the rings R and S, the following conditions are equivalent:
1) R ∼= S;
2) Rl ∼= Sl;

3) E(R)
β∼= E(S), E(R)/Rl

γ∼= E(S)/Sl; here γπ = π
′
β, where π : E(R) →

E(R)/Rl, π
′
: E(S) → E(S)/Sl are canonical epimorphisms and γ is a group
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isomorphism.
Proof. Equivalence of 1) and 2) follows from Lemma 1. We prove that

2)⇒ 3). Let α : Rl → Sl be an ring endomorphism; then, by Lemma 1, there
exists an isomorphism β : E(R) → E(S) such that the diagram with exact
strings

0 −−−→ Rl i−−−→ E(R)
π−−−→ E(R)/Rl −−−→ 0

α

y
yβ

yγ

0 −−−→ Sl i
′

−−−→ E(S)
π
′

−−−→ E(S)/Sl −−−→ 0

(∗∗)

is commutative, where γ is not given; i, i
′ are identical ring immersions; π, π

′

are canonical epimorphisms of the groups. Then, by Proposition 3 [3], there
exists a group isomorphism γ such that the right equare of the diagram (∗∗)
is commutative, i.e., γπ = π

′
β.

3)⇒ 2). Let’s consider the commutative diagram (∗∗) with exact strings
where α is not given; i, i

′ are identical ring immersions; π, π
′ are canonical

epimorphisms of the groups. Then, by Proposition 2 [3], there exists a group
monomorphism α : Rl → Sl such that i

′
α = βi, i.e., the diagram (∗∗)

is commutative. Since im βi ⊆ im i
′
, α = (i

′
)−1βi. Since (i

′
)−1, β, i are

ring homomorphisms, α is a ring homomorphism. Let us prove that α is an
epimorphism. Since β is an epimorphism, for an arbitrary s ∈ Sl there exists
b ∈ E(R) such that i

′
(s) = β(b). Then 0 = π

′
(i
′
(s)) = π

′
(β(b)) = γ(π(b)) and

π(b) ∈ Ker γ. Since γ is a monomorphism, π(b) = 0 and b ∈ Ker π = im i.
Therefore, there exists r ∈ Rl such that i(r) = b. Then β(i(r)) = β(b) = i

′
(s)

and, so, (i
′
)−1(β(i(r))) = s, i.e., α(r) = s. Thus we prove that α is a ring

isomorphism.

The result below refers to the so-called isomorphism theorem for
endomorphismrings. By this theorem one usually means that two groups
(maybe from a given class) are isomorphic if their endomorphism rings are
isomorphic [2]. Let K be the class of abelian groups permitting the structure
of a ring with 1. Then, for groups from this class, the following statement is
valid.

Corollary 3. For all A,B ∈ K, the following are equivalent:
1) A ∼= B;
2) (Al)+ ∼= (Bl)+;
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3) E(A)
β∼= E(B), E(A)/(Al)+

γ∼= E(B)/(Bl)+, γπ = π
′
β, where π : E(A) →

E(A)/(Al)+, π
′
: E(B) → E(B)/(Bl)+ are canonical epimorphisms.

L. Fuchs put Problem 84 [4]: find criteria for different types of rings under
which these rings are endomorphism rings of abelian groups. This problem
is solved in the following statement for arbitrary associative rings with 1.

Corollary 4. For a ring R and abelian group A the following are equivalent:
1) R ∼= E(A);
2) Rl ∼= (E(A))l;

3) E(R)
β∼= E(E(A)), E(R)/Rl

γ∼= E(E(A))/(E(A))l, γπ = π
′
β, where

π : E(R) → E(R)/Rl, π
′

: E(E(A)) → E(E(A))/(E(A))l are canonical
epimorphisms.

If we take an associative ring A with 1 instead of an abelian group in
Corollary 4, we obtain the conditions under which a ring R is the endomorphism
ring of the additive group of a ring A.
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