О некоторых обобщениях радикала идеала и радикала подмодуля

В.М. Мисяков

В теории коммутативных колец хорошо известно понятие радикала идеала [1]. Напомним, что если I – идеал в коммутативном кольце S с единицей, тогда радикалом идеала I называют множество $\sqrt{I} = \{a \in S \mid \exists n \in$ $N, a^n \in I\}$, которое также является идеалом. В этом определении на элемент a действует аддитивный эндоморфизм a^{n-1} кольца S. В связи с этим возникает вопрос: какие аддитивные эндоморфизмы $\varphi \in E(S)$ и какой идеал I нужно выбрать в произвольном кольце S с единицей, чтобы множество $I'=\{a\in S\mid \exists 0\neq \varphi\in E(S),\ \varphi(a)\in I\}$ было идеалом в S. Как будет отмечено (раздел 1 свойство 1) а)) I должен быть вполне характеристическим идеалом (то есть таким идеалом, который отображается в себя при любом аддитивном эндоморфизме кольца [2]), а ненулевые эндоморфизмы должны выбираться из центра кольца аддитивных эндоморфизмов, который должен в свою очередь быть областью целостности. Таким образом, с каждым вполне характеристическим идеалом I произвольного кольца S с единицей будем связывать вполне характеристический идеал $\widetilde{I}=\{a\in S\mid \exists\ 0
eqarphi\in C(E(S)),\ arphi(a)\in I\},$ который будем называть обобщенным радикалом идеала I. В теореме 1.3 приводятся некоторые необходимые и достаточные условия, описывающие данный объект. Во втором разделе, рассматривая модули над произвольным кольцом с единицей, у которых центры колец эндоморфизмов являются областями целостности, вводится понятие обобщенного радикала для вполне инвариантного подмодуля (то есть такого подмодуля, который отображается в себя при любом эндоморфизме модуля [3]). Причем, ограничения на центр кольца эндоморфизмов и на подмодуль необходимы для того, чтобы обобщенный радикал подмодуля был также подмодулем данного модуля. Стремление избавиться от ограничения на подмодуль быть вполне инвариантным приводит к понятиям с-модуля и слабого радикала для произвольного подмодуля этого модуля. В теоремах 2.3 и 2.6 описываются обобщенные радикалы вполне инвариантных подмодулей и слабые радикалы подмодулей в соответствующих модулях.

Поскольку каждое кольцо можно рассматривать как левый модуль над своим кольцом эндоморфизмов, причем подмодулями такого модуля являются в точности вполне характеристические идеалы данного кольца, то изучение вполне характеристических идеалов произвольного кольца S с единицей входит в общую проблему изучения структуры подмодулей произвольного модуля. Изучение модулей из второго раздела данной работы тесно связано с проблемами описания абелевых групп, которые имеют специальные кольца эндоморфизмов или специальные центры колец эндоморфизмов. Таких, например, как проблема 14 (Фукс)[4]: "Какие группы без кручения (группы без кручения конечного ранга) имеют следующие кольца эндоморфизмов а) нётеровы; б) коммутативные; в) локальные; г) полулокальные? проблема 16 [4]: "Центры колец эндоморфизмов каких групп регулярны, самоинъективны?"

1. Обобщенный радикал вполне характеристического идеала

Введем некоторые обозначения. Всюду в данном разделе через S будем обозначать ненулевое ассоциативное кольцо с единицей, через E(S) – кольцо эндоморфизмов его аддитивной группы, через C(S) и C(E(S)) – центры

соответствующих колец, причем C(E(S)) здесь является областью целостности [2]. Пусть также S_{cc} есть множество всех вполне характеристических идеалов кольца S.

Определение 1.1. Пусть $I \in S_{cc}$, тогда множество $\tilde{I} = \{a \in S \mid \exists \ 0 \neq \varphi \in C(E(S)), \ \varphi(a) \in I\}$ будем называть обобщенным радикалом идеала I.

Если $a \in S$, то обозначим через R_a и L_a такие эндоморфизмы кольца S, что $R_a(x) = xa$, $L_a(x) = ax$ для $x \in S$.

Для кольца S справедливы следующие свойства:

- 1) пусть $A \in S_{cc}$, тогда
- a) $\widetilde{A} \in S_{cc}$;
- б) $A \subseteq \widetilde{A}$;
- в) $\widetilde{A} = \widetilde{\widetilde{A}};$
- 2) пусть $A, B \in S_{cc}$, тогда
- а) если $A \subseteq B$, то $\widetilde{A} \subseteq \widetilde{B}$;
- б) если $A \subseteq B \subseteq \widetilde{A}$, то $\widetilde{A} = \widetilde{B}$;
- в) $\widetilde{A} \cap \widetilde{B} = \widetilde{A \cap B}$;
- Γ) $\widetilde{A+B} = \widetilde{A+B}$;
- 3) $\widetilde{(0)} = \sum_{0 \neq \varphi \in C(E(S))} Ker(\varphi).$

Свойства 1) — 3) легко доказываются, исходя из определения обобщенного радикала вполне характеристического идеала. Также из определения вытекает, что для своего вполне характеристического идеала обобщенный радикал определяется однозначно.

Пусть A – подкольцо кольца S, то обозначим через $L_A = \{L_a \in E(S) \mid a \in A\}$ подкольцо в E(S) изоморфное подкольцу A.

В следующем утверждении рассмотрим кольцо S без ограничения на его центр кольца эндоморфизмов.

Лемма 1.2. Для кольца S следующие утверждения справедливы:

- 1) $\varphi \equiv L_{\varphi(1)} \equiv R_{\varphi(1)}$ для любого $\varphi \in C(E(S))$;
- 2) $\varphi(1) \in C(S)$ для любого $\varphi \in C(E(S))$;
- 3) если $\varphi \in C(E(S))$ и $\varphi(1) = 0$, то $\varphi \equiv 0$;
- 4) $C(E(S)) \cong \{ \varphi(1) \mid \varphi \in C(E(S)) \}.$

Доказательство. 1) Пусть $x \in S$ и $\varphi \in C(E(S))$, тогда $\varphi(x) = \varphi(R_x(1)) = R_x(\varphi(1)) = L_{\varphi(1)}(x)$ (аналогично для $R_{\varphi(1)}$). Очевидно, что из $1) \Rightarrow 2$) и $1) \Rightarrow 3$). 4) Рассмотрим множество $D = \{\varphi(1) | \varphi \in C(E(S))\}$ и построим отображение $\eta : C(E(S)) \longrightarrow D$ по правилу: $\eta(\varphi) = \varphi(1)$. Пусть $\varphi, \psi \in C(E(S))$, тогда $\eta(\varphi\psi) = (\varphi\psi)(1) = (\psi\varphi)(1) = \psi(\varphi(1) \cdot 1) = \psi(L_{\varphi(1)}(1)) = L_{\varphi(1)}(\psi(1)) = \varphi(1)\psi(1) = \eta(\varphi)\eta(\psi)$. Инъективность для η следует из 3), остальные свойства изоморфизма также очевидны.

Теорема 1.3. I) Для собственного вполне характеристического идеала A кольца S следующие условия эквивалентны:

- 1) $\widetilde{A} = S$;
- 2) существует вполне характеристический идеал B такой, что $B\subseteq \widetilde{A}$ и $\widetilde{B}=S;$
- 3) существует максимальный вполне характеристический идеал B такой, что $B\subseteq \widetilde{A}$ и $B\neq \widetilde{B};$
- 4) $L_A \cap C(E(S)) \neq 0$;
- 5) $A \cap D \neq 0$, где $D \subseteq C(S)$ и $D \cong C(E(S))$;
- 6) $\nu(1) \in A$ для некоторого $0 \neq \nu \in C(E(S))$.
- II) Для $A \in S_{cc}$ такого, что $A \neq S$ следующие условия эквивалентны:

- 1) $A = \widetilde{A}$;
- 2) а) $\varphi(1) \not\in A$ для любого $0 \neq \varphi \in C(E(S))$;
 - б) \widetilde{A}/A кольцо без делителей нуля.
- III) Для $A \in S_{cc}$ такого, что $A \neq S$ следующие условия эквивалентны:
- 1) $A \subset \widetilde{A} \subset S$;
- 2) а) для любого $0 \neq \varphi \in C(E(S))$ следует, что $\varphi(1) \not\in A$;
 - б) \widetilde{A}/A кольцо с делителями нуля.

Доказательство. I) 1) \Rightarrow 2). В качестве идеала B можно взять сам идеал A. Из 2) \Rightarrow 1) вытекает из свойств.

- 1) \Rightarrow 3). Пусть $\widetilde{A}=S$, тогда вполне характеристический идеал A можно вложить в некоторый максимальный вполне характеристический идеал B кольца S. Поскольку $A\subseteq B\subseteq \widetilde{A}$, то $\widetilde{A}=\widetilde{B}$ и $B\neq \widetilde{B}$.
- 3) \Rightarrow 1). Пусть B максимальный вполне характеристический идеал в кольце S такой, что $B\subseteq \widetilde{A}$ и $B\neq \widetilde{B}$. Тогда $\widetilde{B}\subseteq \widetilde{A}$ и $S=\widetilde{B}\subseteq \widetilde{A}$.
- $1) \Rightarrow 4$). Следует из леммы 1.2. Докажем, что из $4) \Rightarrow 1$). Пусть $L_A \cap C(E(S)) \neq 0$, то есть существует $0 \neq L_a \in L_A \cap C(E(S))$. Тогда $L_a(r) = ar \in A$ и $r \in \widetilde{A}$ для $r \in S$.

Эквивалентность условий 4) и 5) получим из леммы 1.2.

Очевидно, что из 1) \Rightarrow 6). Покажем, что из 6) \Rightarrow 1). Пусть существует $0 \neq \nu \in C(E(S))$ такое, что $\nu(1) \in A$. Тогда $\nu(x) = \nu(x \cdot 1) = \nu(L_x(1)) = L_x(\nu(1)) \in A$ для $x \in S$, то есть $x \in \widetilde{A}$.

II) 2) \Rightarrow 1). Рассмотрим произвольное $x \in \widetilde{A}$, тогда существует $0 \neq \varphi \in C(E(S))$ такое, что $\varphi(x) \in A$. Поскольку $\varphi(x) = \varphi(x \cdot 1) = \varphi(L_x(1)) = L_x(\varphi(1)) = x\varphi(1) \in A$, то $\overline{x\varphi(1)} = \overline{0} = \overline{x} \cdot \overline{\varphi(1)}$ в факторкольце \widetilde{A}/A . Так как $\varphi(1) \notin A$, то $\overline{\varphi(1)} \neq \overline{0}$ и $x \in A$. Очевидно, что из 1) \Rightarrow 2).

Эквивалентность условий из III) вытекает из I) и II).

Следствие 1.4. $\widetilde{(0)} \neq S$.

Следствие 1.5. Для кольца S следующие условия равносильны:

- 1) $(0) = \widetilde{(0)};$
- (0) кольцо без делителей нуля;

ное утверждение очевидно.

3) каждый ненулевой эндоморфизм из C(E(S)) является мономорфизмом. Доказательство. Поскольку $\varphi(1) \neq 0$ для любого $0 \neq \varphi \in C(E(S))$, то равносильность условий 1) и 2) получаем из II) предыдущей теоремы. Эквивалентность условий 1) и 3) следует из свойства 3).

Идеал, удовлетворяющий эквивалентным условиям I) теоремы 1.3, будем называть **t**-идеалом. Если $a \in S$, то $E(S)a = \{\varphi(a) \mid \varphi \in E(S)\}$ является минимальным вполне характеристическим идеалом, содержащим элемент a.

Пусть в следующем утверждении $D\subseteq C(S)$ и $D\cong C(E(S)).$

Следствие 1.6. В кольце S существует **t**-идеал тогда и только тогда, когда существует элемент $0 \neq a \in D$ такой, что $E(S)a \neq S$; Доказательство. Пусть A – **t**-идеал в S и допустим, что для любого $0 \neq a \in D$ следует, что E(S)a = S. Тогда для некоторого элемента $0 \neq b \in A \cap D$ имеем $S = E(S)b \subseteq A$, что противоречит собственности идеала A. Обрат-

2. Обобщённый и слабый радикалы подмодуля

Пусть S — ассоциативное кольцо с единицей и A — правый S-модуль, обозначим через $End_S(A)$ кольцо его эндоморфизмов, а через Lat(A) (A_{fi}) — множество (вполне инвариантных) подмодулей модуля A. Если A — модуль, у которого $C(End_S(A))$ является областью целостности, то такой модуль A будем называть **cerd**-модулем (the center of endomorphism ring is a domain). Если B – подмодуль модуля A, то фактормодуль A/B также рассматривается над кольцом S.

Определение 2.1. Пусть A – **cerd**-модуль и $B \in A_{fi}$. Множество $\widetilde{B} = \{a \in A \mid \exists \ 0 \neq \varphi \in C(End_S(A)), \ \varphi(a) \in B\}$ будем называть обобщенным радикалом подмодуля B.

Для cerd -модуля A справедливы следующие свойства:

- 1) пусть $B \in A_{fi}$, тогда
- a) $\widetilde{B} \in A_{fi}$;
- б) $B \subseteq \widetilde{B}$;
- в) $\widetilde{B} = \widetilde{\widetilde{B}};$
- 2) пусть $B, C \in A_{fi}$, тогда
- а) если $B \subseteq C$, то $\widetilde{B} \subseteq \widetilde{C}$;
- б) если $B\subseteq C\subseteq \tilde{B},$ то $\tilde{B}=\tilde{C};$
- B) $\widetilde{B} \cap \widetilde{C} = \widetilde{B \cap C}$;
- Γ) $\widetilde{B+C} = \widetilde{B+\widetilde{C}}$;
- 3) $\widetilde{(0)} = \sum_{0 \neq \varphi \in C(End_S(A))} Ker(\varphi).$

Определение 2.2. Пусть B – подмодуль модуля A. Будем говорить, что эндоморфизм $\psi \in End_S(A/B)$ можно поднять до центрального эндоморфизма по подмодулю B и обозначать ψ_B , если существует эндоморфизм $0 \neq \varphi \in C(End_S(A))$ такой, что $\varphi(B) \subseteq B$ и $\psi(\overline{a}) = \varphi(a) + B$ для любого $\overline{a} \in A/B$.

Следующее утверждение дает некоторое описание обобщенного радикала вполне инвариантного подмодуля произвольного \mathbf{cerd} -модуля A.

Теорема 2.3. Пусть A – **cerd**-модуль и $B \in A_{fi}$ такой, что $B \neq A$.

- I) Следующие условия эквивалентны:
- 1) $\widetilde{B} = A$;
- 2) существует подмодуль Dтакой, что $D\subseteq \widetilde{B}$ и $\widetilde{D}=A;$
- 3) $A/B = \sum_{\psi_B \in End_S(A/B)} Ker(\psi_B)$.
- II) Следующие условия эквивалентны:
- 1) $\widetilde{B} = B$;
- 2) всякий эндоморфизм $0 \neq \psi_B \in End_S(A/B)$ является мономорфизмом.
- III) Следующие условия эквивалентны:
- 1) $B \subset \widetilde{B} \subset A$;
- 2) а) существует эндоморфизм $0 \neq \psi_B \in End_S(A/B)$, не являющийся мономорфизмом;
 - 6) $A/B \neq \sum_{\psi_B \in End_S(A/B)} Ker(\psi_B)$.

Доказательство. І) Эквивалентность условий 1) и 2) доказывается также, как доказывается эквивалентность аналогичных условий в теореме 1.3. 1) \Rightarrow 3). Пусть $\bar{a} \in A/B$, тогда для элемента $a \in \bar{a}$ существует $0 \neq \varphi \in C(End_S(A))$ такой, что $\varphi(a) \in B$. Поскольку B – вполне инвариантный подмодуль, то эндоморфизм φ будет индуцировать эндоморфизм $\psi \in End_S(A/B)$ такой, что $\psi(\bar{d}) = \varphi(d) + B$ для любого $\bar{d} \in A/B$. Тогда ψ поднимается до центрального эндоморфизма по подмодулю B и $\bar{a} \in Ker(\psi_B) \subseteq \sum_{\psi_B \in End_S(A/B)} Ker(\psi_B)$.

 $3)\Rightarrow 1)$. Поскольку $B\subseteq \widetilde{B}$, то достаточно рассмотреть случай, когда $a\in A\setminus B$, то есть $\overline{0}\neq \overline{a}\in A/B$. Тогда по условию $\overline{a}=\overline{a_1}+\ldots+\overline{a_k}$, где $\overline{a_i}\in Ker((\psi_i)_B)$ для любого $i=1,\ldots,k$. Поскольку для каждого $i=1,\ldots,k$ найдется $0\neq \varphi_i\in C(End_S(A))$ такое, что $(\psi_i)_B(\overline{a_i})=\varphi_i(a_i)+B$, то $\varphi_i(a_i)\in B$ для любого $i=1,\ldots,k; 0\neq \varphi_1\cdot\ldots\cdot\varphi_k\in C(End_S(A))$ и существует индуцированный эндоморфизм $\psi\in End_S(A/B)$, обладающий свойством

 $\psi(\overline{x})=(\varphi_1\cdot\ldots\cdot\varphi_k)(x)+B$ для любого $\overline{x}\in A/B$. Тогда $(\varphi_1\cdot\ldots\cdot\varphi_k)(a)+B=\psi(\overline{a})=\psi(\overline{a_1})+\ldots+\psi(\overline{a_k})=((\varphi_1\cdot\ldots\cdot\varphi_k)(a_1)+B)+\ldots+((\varphi_1\cdot\ldots\cdot\varphi_k)(a_k)+B)=((\varphi_2\cdot\ldots\cdot\varphi_k)(\varphi_1(a_1))+B)+\ldots+((\varphi_1\cdot\ldots\cdot\varphi_{k-1})(\varphi_k(a_k))+B)=\overline{0}$ и, следовательно, $(\varphi_1\cdot\ldots\cdot\varphi_k)(a)\in B$. Поэтому $a\in\widetilde{B}$ и $\widetilde{B}=A$.

II) 1) \Rightarrow 2). Пусть ψ_B — произвольный ненулевой эндоморфизм, который поднимается до центрального эндоморфизма по подмодулю B. Тогда существует эндоморфизм $0 \neq \varphi \in C(End_S(A))$ такой, что $\psi(\overline{a}) = \varphi(a) + B$ для любого $\overline{a} \in A/B$. Пусть элементы $\overline{a}, \overline{b} \in A/B$ и $\psi(\overline{a}) = \psi(\overline{b})$, тогда $\varphi(a) + B = \varphi(b) + B$. Следовательно, $\varphi(a - b) \in B$ и $a - b \in \widetilde{B} = B$, то есть $\overline{a} = \overline{b}$.

 $2)\Rightarrow 1)$. Пусть $b\in \widetilde{B}$, тогда $\varphi(b)\in B$ для некоторого $0\neq \varphi\in C(End_S(A))$. Поскольку $B\in A_{fi}$, то существует индуцированный эндоморфизм $\psi\in End_S(A/B)$ такой, что $\psi(\overline{a})=\varphi(a)+B$ для любого $\overline{a}\in A/B$. Следовательно, эндоморфизм ψ поднимается до центрального эндоморфизма по подмодулю B. Покажем, что ψ — ненулевой эндоморфизм. Действительно, если предположить, что $\psi=0$, то $\overline{0}=\psi(\overline{a})=\varphi(a)+B$ для любого $\overline{a}\in A/B$. Следовательно, $\varphi(a)\in B$ для любого $a\in A$, то есть $a\in \widetilde{B}$ и $\widetilde{B}=A$, что противоречит условию. Поскольку $\varphi(b)\in B$, то $\psi(\overline{b})=\overline{0}$ и $\overline{b}\in Ker(\psi)=\overline{0}$. Следовательно, $b\in B$ и $\widetilde{B}=B$.

Эквивалентность условий из III) следует из I) и II).

Пусть $x \in A$, тогда аннулятор модуля A и аннулятор элемента x [2] будем обозначать соответственно через Ann(A) и Ann(x).

Определение 2.4. Модуль A будем называть **с**-модулем, если $C(S) \setminus Ann(A)$ – мультипликативный моноид.

Определение 2.5. Пусть A – **с**-модуль и B – подмодуль в A, тогда мно-

жество $\hat{B}=\{m\in A\mid \exists a\in C(S)\backslash Ann(A), ma\in B\}$ будем называть слабым радикалом подмодуля B.

Для ${\bf c}$ -модуля A справедливы следующие свойства:

- 1) пусть $B \in Lat(A)$, тогда
- a) $\widehat{B} \in Lat(A)$;
- б) $B \subseteq \hat{B}$;
- в) $\hat{B} = \hat{\hat{B}};$
- 2) пусть $B,D\in Lat(A)$, тогда
- а) если $B \subseteq D$, то $\widehat{B} \subseteq \widehat{D}$;
- б) если $B \subseteq D \subseteq \widehat{B}$, то $\widehat{B} = \widehat{D}$;
- B) $\widehat{B} \cap \widehat{D} = \widehat{B \cap D}$;
- Γ) $\widehat{B+D} = \widehat{B+D}$.

Свойства 1), 2) легко доказываются, исходя из определения слабого радикала.

3) $\widehat{(0)} = R$, где $R = \{x \in A \mid Ann(x) \cap (C(S) \setminus Ann(A)) \neq \emptyset\}.$

Доказательство. Пусть $x\in \widehat{(0)}$, тогда существует $a\in C(S)\setminus Ann(A)$ такой, что xa=0. Так как $a\in Ann(x)$ и $a\in C(S)\setminus Ann(A)$, то $a\in Ann(x)\cap (C(S)\setminus Ann(A))$ и, следовательно, $x\in R$.

Обратно, пусть $x \in R$, тогда $Ann(x) \cap (C(S) \setminus Ann(A)) \neq \emptyset$, то есть существует $a \in Ann(x) \cap (C(S) \setminus Ann(A))$. Тогда xa = 0, то есть $x \in \widehat{(0)}$.

Следующее утверждение дает некоторое описание слабого радикала подмодуля произвольного ${\bf c}$ -модуля A.

Теорема 2.6. Пусть B – собственный подмодуль **с**-модуля A.

- I) Следующие условия эквивалентны:
- 1) $\hat{B} = A$;

- 2) существует собственный подмодуль D такой, что $D\subseteq \widehat{B}$ и $\widehat{D}=A.$
- 3) $(C(S) \setminus Ann(A)) \cap Ann(\overline{a}) \neq \emptyset$ для любого $\overline{a} \in A/B$.
- II) Следующие условия эквивалентны:
- 1) $\hat{B} = B$;
- $2) \ (C(S) \setminus Ann(A)) \cap (\cup_{\overline{0} \neq \overline{a} \in \widehat{B}/B} Ann(\overline{a})) = \emptyset.$
- III) Следующие условия эквивалентны:
- 1) $B \subset \hat{B} \subset A$;
- 2) а) существует $\overline{a} \in A/B$ такой, что $(C(S) \setminus Ann(A)) \cap Ann(\overline{a}) = \emptyset$.
 - 6) $(C(S) \setminus Ann(A)) \cap (\bigcup_{\overline{0} \neq \overline{a} \in \widehat{B}/B} Ann(\overline{a})) \neq \emptyset.$

Доказательство. І) Эквивалентность условий 1) и 2) доказывается также, как доказывается эквивалентность аналогичных условий в теореме 1.3.

- 1) \Rightarrow 3). Пусть $\overline{a} \in A/B$ и $a \in \overline{a}$. Так как $\widehat{B} = A$, то для $a \in A$ существует $r \in C(S) \setminus Ann(A)$ такой, что $ar \in B$. Тогда $\overline{a}r = (a+B)r = ar + B = \overline{0}$ и, поэтому, $r \in Ann(\overline{a})$.
- $(3)\Rightarrow 1$). Рассмотрим произвольный элемент $m\in A$, поскольку $L=(C(S)\setminus Ann(A))\cap Ann(\overline{a})\neq\emptyset$ для любого $\overline{a}\in A/B$, то найдется элемент $r\in L$ такой, что $\overline{0}=(m+B)r=mr+B$. Следовательно, $mr\in B$ и $m\in \widehat{B}$.
- II) Очевидно, что из 1) \Rightarrow 2). Покажем, что из 2) \Rightarrow 1). Если допустить, что существует $b \in \widehat{B} \setminus B$, то найдется $r \in C(S) \setminus Ann(A)$ такой, что $br \in B$. Тогда $\overline{0} = br + B = (b + B)r = \overline{b}r$. Так как $\overline{0} \neq \overline{b} \in \widehat{B}/B$, то $r \in \bigcup_{\overline{0} \neq \overline{a} \in \widehat{B}/B} Ann(\overline{a})$. Следовательно, $(C(S) \setminus Ann(A)) \cap (\bigcup_{\overline{0} \neq \overline{a} \in \widehat{B}/B} Ann(\overline{a})) \neq \emptyset$, что противоречит условию.

Эквивалентность утверждений из III) следует непосредственно из I) и II).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1] Зарисский О., Самюэль П. Коммутативная алгебра. Т.1. М.: ИЛ, 1963.
- [2] Мельников О.В., Ремесленников В.Н., Романьков В.А. и др. Общая алгебра. Т.1. М.: Наука, 1990.
- [3] Фейс К. Алгебра: кольца, модули и категории. Т.1. М.: Мир, 1977.
- [4] Krylov P.A., Mikhalev A.V. and Tuganbaev A.A. Endomorphism Rings of Abelian Groups. Kluwer Academic Publishers. Dordrecht Boston London. 2003.