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Abstract

We study abelian groups with a regular center of the endomor-
phism ring.

This paper deals with a question posed in Problem 16 [1]: ”For which
groups centers of their endomorphism rings are regular?” We recall that a
ring R is said to be regular if for each element x ∈ R there exists an ele-
ment y ∈ R such that xyx = x. Since it is well-known that the center of a
regular ring is regular, the class of abelian groups with a regular center of
the endomorphism ring contains the class of abelian groups with a regular
endomorphism ring. At the same time, as it is shown below, these classes
coincide in some cases.

All the groups throughout the paper are abelian. We use the following
designations: Q is the field of rational numbers; direct sum and product of
groups (rings) are denoted by the symbols ⊕ and × or

∏
respectively. Let

X and Y be two groups. Then T (X) is the torsion subgroup of the group
X, Tp (X) is the p -component of T (X), E (X) is the endomorphism ring
of the group X, Hom (X, Y ) is the group of homomorphisms from X to Y ,
X [p ] = {a ∈ X | p a = 0}, C (R) is the center of the ring R. All not defined
notions (”reduced group”, ”height matrix of an element” etc.) can be found
in [5], [6], [7].

Lemma 1. The center of the endomorphism ring of a group G is regular
if and only if G = im (α) ⊕ ker (α) for each α ∈ C(E (G)).
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Proof. Let C (E (G)) be a regular ring. Then for each α ∈ C(E (G))
there exists β ∈ C(E (G)) such that αβα = α. The inclusions im (α) =
im (αβα) ⊆ im (αβ) ⊆ im (α) and ker (α) ⊆ ker (βα) ⊆ ker (αβα) = ker (α)
are valid, so im (α) = im (αβ) and ker (α) = ker (βα) = ker (αβ). Since
αβ is an idempotent of the ring C (E (G)), then G = im (αβ) ⊕ ker (αβ) =
im (α) ⊕ ker (α).

Conversely, let G = im (α) ⊕ ker (α) for each 0 6= α ∈ C(E (G)). Then
α | im (α) is an automorphism on im (α). Therefore, there exists β ∈ E (G)
which annihilates ker (α) and is inverse to α | im (α) on im (α). We demon-
strate that β ∈ C(E (G)). Let ϕ ∈ E (G) and x ∈ G, then x = x1 +
x2, where x1 ∈ im (α), x2 ∈ ker (α). Therefore, (ϕβ) (x) = ϕ (β (x1 +
x2)) = ϕ (β (x1)). Since x1 ∈ im (α), there exists a1 ∈ im (α) such that
α | im (α) (a1) = x1. Since im (α), ker (α) are fully invariant subgroups in G,
ϕ (β (x1)) = ϕ (β (α | im (α) (a1))) = ϕ (a1) = (βα) (ϕ (a1)) = β (ϕ (α (a1))) =
β (ϕ (x1)) = β (ϕ (x1)) + β (ϕ (x2)) = (βϕ)(x).

Let a ∈ G, then a = a1 + a2, where a1 ∈ im (α), a2 ∈ ker (α). Therefore,
(αβα) (a) = (αβα) (a1) = α (a1) = α (a1) + α (a2) = α (a). If α = 0, the
statement is trivial.

Note 1. As it was shown in [2] and [3], the endomorphism ring of an
elementary or divisible torsion free group is regular. So, the center of this
ring is also regular.

Note 2. We shall use the following statement which is easy to prove. Let
G = A ⊕ B, where A, B are fully invariant subgroups of the group G. The
ring C (E (G)) is regular if and only if C (E (A)), C(E (B)) are regular rings.

The following statement is based on the concept of idealization of bimod-
ules. Let us recall this concept.

Let R and S be two rings, M be an R-S-bimodule. Idealization of the

bimodule M is a ring consisting of all matrices of the form

(
r m
0 s

)
, where

r ∈ R, s ∈ S, m ∈ M , with usual operations of matrix addition and multipli-

cation. This ring will be denoted by the symbol

(
R M
0 S

)
or by a single letter

K. The rings R and S will be naturally identified with

(
R 0
0 0

)
and

(
0 0
0 S

)
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respectively, the product R × S with

(
R 0
0 S

)
, and the bimodule M with

(
0 M
0 0

)
. To save place, the diagonal matrix

(
r 0
0 s

)
will be written in the

vector form (r, s). There are two canonical surjective ring homomorphisms:

K → R,

(
r m
0 s

)
→ r, K → S,

(
r m
0 s

)
→ s.

The following Lemma was proved in [8].

Lemma 2. The center C (K) of the idealization K of the R-S-bimodule
M consists of all diagonal matrices (r, s), where r ∈ C (R), s ∈ C (S), and
rm = ms for each m ∈ M .

If A is a left R-module, its annihilator is denoted by Ann R A. As fol-
lows from the Lemma, C (K) is a subring in C (R) × C (S) and, similarly,
Ann C(R) M , Ann C(S) M ⊆ C (K). Taking into account the note before
Lemma 2, we have the ring homomorphisms f : C (K) → C (R), (r, s) → r
and g : C (K) → C (S), (r, s) → s. The annihilators Ann C(R) M and
Ann C(S) M are fixed under the homomorphisms f and g respectively. In
particular, Ann C(R) M ⊆ im (f), Ann C(S) M ⊆ im (g). We present one more
result from [8], which will be referred to below.

Lemma 3. In the above-stated designations, we have
1) ker (f) = Ann C(S) M and ker (g) = Ann C(R) M ;
2) if M is an exact C (S)-module, then f is a monomorphism; and if M is
an exact C (R)-module, then g is a monomorphism.

Considering endomorphism rings of groups, we can obtain an idealization
of a bimodule in the following situation. Let G be a direct sum of two groups,
G = B ⊕ A, where B is a fully invariant summand, i.e., Hom (B, A) = 0.
The homomorphism group Hom (A, B) can be turned to an E (B)-E (A)-
bimodule in the standard way. Therefore, one can write an idealization of
this bimodule: (

E (B) Hom (A, B)
0 E (A)

)
.
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Since it is well-known that the ring E (G) can be naturally identified
with a given ring of matrices (see [6, Theorem 106.1]), the endomorphism
ring E (G) can be considered as an idealization of the E (B)-E (A)-bimodule
Hom (A, B).

Proposition 4. Let G = B⊕A, where A is a reduced torsion free group,
B is a divisible torsion free group. Then the center of the endomorphism ring
of the group G can be identified with a subring of the field Q generated by 1
and all numbers 1/p such that p G = G.

Proof. Let G = B ⊕ A, where A and B satisfy the condition of Propo-
sition 8 and B 6= 0. Since Hom (B, A) = 0, we conclude that the ring E (G)
is an idealization of the E (B)-E (A)-bimodule Hom (A, B). Let us demon-
strate that Hom (A, B) is an exact E (A)-module. Suppose the contrary, i.e.,
Hom (A, B) α = 0 for some 0 6= α ∈ E (A). It is easy to show that there
exists an element a ∈ A such that ◦(a) = ∞ and α (a) 6= 0. Let 0 6= b ∈ B.
Since the height matrix of the element α (a) in the group A is less than that
of the element b in the group B, there exists ϕ ∈ Hom (A, B) such that
ϕ (α (a)) = b. Since b 6= 0, then ϕα 6= 0, what contradicts the assumption.
Thus, Hom (A, B) is an E (A)-module. By Lemma 3, the ring C (E (G)) can
be embedded into the ring C (E (B)) isomorphic to Q. Let us show that the
ring C (E (G)) can be identified with a subring of the field Q. Since all the
natural numbers belong to C (E (G)), it is sufficient to show that if a rational
number of the form 1

q
∈ im (ϕ), where ϕ is an embedding of the ring C (E (G))

into the field Q, there exists an endomorphism from C (E (G)) which acts on
elements of the group G as multiplication by the fraction 1

q
. Let the equa-

tion qx = 1 (where q is a prime number) be solved in im (ϕ), i.e., there exists
β ∈ im (ϕ) such that qβ = 1. Since ϕ (α) = β for some α ∈ C(E (G)),
it means that α is a solution of the equation qy = 1 in the ring C (E (G)).
Then for each g ∈ G, α (g) = (1

q
q) (α (g)) = 1

q
(qα) (g) = 1

q
(g). Therefore,

elements of the center represent multiplications by rational numbers m/n.
Moreover, it is easy to see that nG = G. Conversely, if nG = G, then the
result of multiplication of the group G by a number m/n is in C (E (G)). We
obtain that the center C (E (G)) can be identified with a subring of the field
Q mentioned in the Proposition.

Now we prove the main result of the work.
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Theorem 5. 1) If G is not a reduced group, then C(E (G)) is a regular
ring if and only if the group G satisfies at least one of the following condi-
tions:
a) G is a divisible torsion free group;
b) G = A⊕D, where A is an elementary group, and D is a divisible torsion
free group.
2) If G is a reduced group and C(E (G)) is a regular ring, then T (G) is an ele-
mentary group, G/ T (G) is a divisible group and ⊕

p∈P
Tp (G) ⊆ G ⊆ ∏

p∈P

Tp (G).

Proof. Note that the proof of this Theorem is based on the idea of the
corresponding proofs from [2] and [3]. For instance, replacing E (G) by its
center, we can obtain the proof of the condition 2) of the Theorem. For
completeness, we prove condition 1). Let G = A⊕D, where A is a reduced
group, 0 6= D is a divisible group. Assume that T (G) = 0. Let n be
an arbitrary natural number. Since n ∈ C(E (G)), regularity of C (E (G))
implies that G = im (n) ⊕ ker (n). By assumption, G is a torsion free
group, so ker (n) = 0 and G = im (n) = nG, i.e., G is a divisible torsion
free group. Let T (G) 6= 0. Then multiplication by a fixed prime number
p is an endomorphism from C (E (G)) whose kernel is Tp (G) [p]. It follows
from regularity of the ring C (E (G)) that Tp (G) [p] is a direct summand
but it is possible only if Tp (G) coincides with Tp (G) [p]. Therefore, T (G)
is an elementary group. Since elementary groups are not divisible, D is a
divisible torsion free group and T (G) = T (A), A 6= 0. Let us assume that
A 6= T (A). Then, by Proposition 4, the ring C (E (G)) is isomorphic to a
subring L of the field Q which is generated by 1 and all numbers 1/p such
that pG = G. If we assume that L 6= Q, there exists a prime number q such
that 1/q 6∈ L. Regularity of the ring L implies existence of x ∈ L such that
qxq = q. It follows that x = 1/q ∈ L what contradicts the assumption. Thus,
C (E (G)) ∼= Q and pG = G for any prime number p, but this is impossible
because the direct summand A is reduced in G. Therefore, A = T (A) is an
elementary group. The converse statement follows from Notes 1 and 2.
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